University of Florence, Florence, Italy; University of Siena, Siena, Italy.
University of Siena, Siena, Italy.
Prog Brain Res. 2019;249:183-188. doi: 10.1016/bs.pbr.2019.01.001. Epub 2019 Feb 8.
Eye movements are an essential part of human vision as they drive the fovea and, consequently, selective visual attention toward a region of interest in space. Free visual exploration is an inherently stochastic process depending on image statistics but also individual variability of cognitive and attentive state. We propose a theory of free visual exploration entirely formulated within the framework of physics and based on the general Principle of Least Action. Within this framework, differential laws describing eye movements emerge in accordance with bottom-up functional principles. In addition, we integrate top-down semantic information captured by deep convolutional neural networks pre-trained for the classification of common objects. To stress the model, we used a wide collection of images including basic features as well as high level semantic content. Results in a task of saliency prediction validate the theory.
眼球运动是人类视觉的重要组成部分,因为它驱使中央凹,从而将选择性视觉注意力集中到空间中的感兴趣区域。自由视觉探索是一个内在的随机过程,它取决于图像统计,但也取决于认知和注意力状态的个体可变性。我们提出了一种完全在物理学框架内并基于最小作用量原理的自由视觉探索理论。在这个框架内,描述眼球运动的微分定律是根据自下而上的功能原理出现的。此外,我们还整合了由深度卷积神经网络预先训练得到的用于常见物体分类的自上而下的语义信息。为了强调模型,我们使用了包括基本特征和高级语义内容在内的广泛的图像集。在显著预测任务中的结果验证了该理论。