Suppr超能文献

紊乱图谱:基于网络的软件,用于基于蛋白质组的内在无序预测的解释。

Disorder Atlas: Web-based software for the proteome-based interpretation of intrinsic disorder predictions.

机构信息

Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.

Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, MI, USA.

出版信息

Comput Biol Chem. 2019 Dec;83:107090. doi: 10.1016/j.compbiolchem.2019.107090. Epub 2019 Jul 13.

Abstract

Intrinsically disordered proteins lack a stable three-dimensional structure under physiological conditions. While this property has gained considerable interest within the past two decades, disorder poses substantial challenges to experimental characterization efforts. In effect, numerous computational tools have been developed to predict disorder from primary sequences, however, interpreting the output of these algorithms remains a challenge. To begin to bridge this gap, we present Disorder Atlas, web-based software that facilitates the interpretation of intrinsic disorder predictions using proteome-based descriptive statistics. This service is also equipped to facilitate large-scale systematic exploratory searches for proteins encompassing disorder features of interest, and further allows users to browse the prevalence of multiple disorder features at the proteome level. As a result, Disorder Atlas provides a user-friendly tool that places algorithm-generated disorder predictions in the context of the proteome, thereby providing an instrument to compare the results of a query protein against predictions made for an entire population. Disorder Atlas currently supports ten eukaryotic proteomes and is freely available for non-commercial users at http://www.disorderatlas.org.

摘要

在生理条件下,无规则蛋白质缺乏稳定的三维结构。尽管在过去二十年中,这一特性引起了相当大的兴趣,但无序给实验特征描述带来了巨大的挑战。实际上,已经开发了许多计算工具来从原始序列中预测无序,但解释这些算法的输出仍然是一个挑战。为了开始弥合这一差距,我们提出了 Disorder Atlas,这是一个基于网络的软件,它使用基于蛋白质组的描述性统计来促进对固有无序预测的解释。该服务还能够方便地进行大规模的系统探索性搜索,以寻找包含感兴趣无序特征的蛋白质,并进一步允许用户浏览蛋白质组水平上多种无序特征的流行程度。因此,Disorder Atlas 提供了一个用户友好的工具,将算法生成的无序预测置于蛋白质组的背景下,从而提供了一种将查询蛋白质的结果与针对整个蛋白质组做出的预测进行比较的工具。Disorder Atlas 目前支持十个真核生物蛋白质组,并且可以在 http://www.disorderatlas.org 免费供非商业用户使用。

相似文献

4
Prediction of protein disorder based on IUPred.基于IUPred的蛋白质无序预测。
Protein Sci. 2018 Jan;27(1):331-340. doi: 10.1002/pro.3334. Epub 2017 Nov 16.
7
MobiDB: intrinsically disordered proteins in 2021.MobiDB:2021 年无规卷曲蛋白
Nucleic Acids Res. 2021 Jan 8;49(D1):D361-D367. doi: 10.1093/nar/gkaa1058.

本文引用的文献

2
Computational Prediction of Intrinsic Disorder in Proteins.蛋白质内在无序性的计算预测
Curr Protoc Protein Sci. 2017 Apr 3;88:2.16.1-2.16.14. doi: 10.1002/cpps.28.
4
DisProt 7.0: a major update of the database of disordered proteins.DisProt 7.0:无序蛋白质数据库的重大更新。
Nucleic Acids Res. 2017 Jan 4;45(D1):D219-D227. doi: 10.1093/nar/gkw1056. Epub 2016 Nov 28.
9
UniProt: a hub for protein information.通用蛋白质数据库(UniProt):蛋白质信息中心。
Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12. doi: 10.1093/nar/gku989. Epub 2014 Oct 27.
10
Assessment of protein disorder region predictions in CASP10.CASP10中蛋白质无序区域预测的评估
Proteins. 2014 Feb;82 Suppl 2(0 2):127-37. doi: 10.1002/prot.24391. Epub 2013 Nov 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验