Suppr超能文献

紊乱图谱:基于网络的软件,用于基于蛋白质组的内在无序预测的解释。

Disorder Atlas: Web-based software for the proteome-based interpretation of intrinsic disorder predictions.

机构信息

Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.

Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, MI, USA.

出版信息

Comput Biol Chem. 2019 Dec;83:107090. doi: 10.1016/j.compbiolchem.2019.107090. Epub 2019 Jul 13.

Abstract

Intrinsically disordered proteins lack a stable three-dimensional structure under physiological conditions. While this property has gained considerable interest within the past two decades, disorder poses substantial challenges to experimental characterization efforts. In effect, numerous computational tools have been developed to predict disorder from primary sequences, however, interpreting the output of these algorithms remains a challenge. To begin to bridge this gap, we present Disorder Atlas, web-based software that facilitates the interpretation of intrinsic disorder predictions using proteome-based descriptive statistics. This service is also equipped to facilitate large-scale systematic exploratory searches for proteins encompassing disorder features of interest, and further allows users to browse the prevalence of multiple disorder features at the proteome level. As a result, Disorder Atlas provides a user-friendly tool that places algorithm-generated disorder predictions in the context of the proteome, thereby providing an instrument to compare the results of a query protein against predictions made for an entire population. Disorder Atlas currently supports ten eukaryotic proteomes and is freely available for non-commercial users at http://www.disorderatlas.org.

摘要

在生理条件下,无规则蛋白质缺乏稳定的三维结构。尽管在过去二十年中,这一特性引起了相当大的兴趣,但无序给实验特征描述带来了巨大的挑战。实际上,已经开发了许多计算工具来从原始序列中预测无序,但解释这些算法的输出仍然是一个挑战。为了开始弥合这一差距,我们提出了 Disorder Atlas,这是一个基于网络的软件,它使用基于蛋白质组的描述性统计来促进对固有无序预测的解释。该服务还能够方便地进行大规模的系统探索性搜索,以寻找包含感兴趣无序特征的蛋白质,并进一步允许用户浏览蛋白质组水平上多种无序特征的流行程度。因此,Disorder Atlas 提供了一个用户友好的工具,将算法生成的无序预测置于蛋白质组的背景下,从而提供了一种将查询蛋白质的结果与针对整个蛋白质组做出的预测进行比较的工具。Disorder Atlas 目前支持十个真核生物蛋白质组,并且可以在 http://www.disorderatlas.org 免费供非商业用户使用。

相似文献

1
Disorder Atlas: Web-based software for the proteome-based interpretation of intrinsic disorder predictions.
Comput Biol Chem. 2019 Dec;83:107090. doi: 10.1016/j.compbiolchem.2019.107090. Epub 2019 Jul 13.
2
Quantitative proteome-based guidelines for intrinsic disorder characterization.
Biophys Chem. 2016 Jun;213:6-16. doi: 10.1016/j.bpc.2016.03.005. Epub 2016 Apr 5.
3
A collection of intrinsic disorder characterizations from eukaryotic proteomes.
Sci Data. 2016 Jun 21;3:160045. doi: 10.1038/sdata.2016.45.
4
Prediction of protein disorder based on IUPred.
Protein Sci. 2018 Jan;27(1):331-340. doi: 10.1002/pro.3334. Epub 2017 Nov 16.
5
High-throughput prediction of disordered moonlighting regions in protein sequences.
Proteins. 2018 Oct;86(10):1097-1110. doi: 10.1002/prot.25590. Epub 2018 Sep 23.
6
Prediction of intrinsic disorder in proteins using MFDp2.
Methods Mol Biol. 2014;1137:147-62. doi: 10.1007/978-1-4939-0366-5_11.
7
MobiDB: intrinsically disordered proteins in 2021.
Nucleic Acids Res. 2021 Jan 8;49(D1):D361-D367. doi: 10.1093/nar/gkaa1058.
8
BASILIScan: a tool for high-throughput analysis of intrinsic disorder patterns in homologous proteins.
BMC Genomics. 2018 Dec 11;19(1):902. doi: 10.1186/s12864-018-5322-5.
9
Tutorial: a guide for the selection of fast and accurate computational tools for the prediction of intrinsic disorder in proteins.
Nat Protoc. 2023 Nov;18(11):3157-3172. doi: 10.1038/s41596-023-00876-x. Epub 2023 Sep 22.
10
Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life.
Cell Mol Life Sci. 2015 Jan;72(1):137-51. doi: 10.1007/s00018-014-1661-9. Epub 2014 Jun 18.

引用本文的文献

3
Autoantibodies Directed Toward a Novel IA-2 Variant Protein Enhance Prediction of Type 1 Diabetes.
Diabetes. 2019 Sep;68(9):1819-1829. doi: 10.2337/db18-1351. Epub 2019 Jun 5.

本文引用的文献

1
On the Need to Develop Guidelines for Characterizing and Reporting Intrinsic Disorder in Proteins.
Proteomics. 2019 Mar;19(6):e1800415. doi: 10.1002/pmic.201800415. Epub 2019 Mar 1.
2
Computational Prediction of Intrinsic Disorder in Proteins.
Curr Protoc Protein Sci. 2017 Apr 3;88:2.16.1-2.16.14. doi: 10.1002/cpps.28.
3
CIDER: Resources to Analyze Sequence-Ensemble Relationships of Intrinsically Disordered Proteins.
Biophys J. 2017 Jan 10;112(1):16-21. doi: 10.1016/j.bpj.2016.11.3200.
4
DisProt 7.0: a major update of the database of disordered proteins.
Nucleic Acids Res. 2017 Jan 4;45(D1):D219-D227. doi: 10.1093/nar/gkw1056. Epub 2016 Nov 28.
5
A collection of intrinsic disorder characterizations from eukaryotic proteomes.
Sci Data. 2016 Jun 21;3:160045. doi: 10.1038/sdata.2016.45.
6
Quantitative proteome-based guidelines for intrinsic disorder characterization.
Biophys Chem. 2016 Jun;213:6-16. doi: 10.1016/j.bpc.2016.03.005. Epub 2016 Apr 5.
8
MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins.
Nucleic Acids Res. 2015 Jan;43(Database issue):D315-20. doi: 10.1093/nar/gku982. Epub 2014 Oct 31.
9
UniProt: a hub for protein information.
Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12. doi: 10.1093/nar/gku989. Epub 2014 Oct 27.
10
Assessment of protein disorder region predictions in CASP10.
Proteins. 2014 Feb;82 Suppl 2(0 2):127-37. doi: 10.1002/prot.24391. Epub 2013 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验