Suppr超能文献

铣削加工中不安全区域的实验观察

Experimental observations on unsafe zones in milling processes.

作者信息

Dombovari Zoltan, Iglesias Alex, Molnar Tamas G, Habib Giuseppe, Munoa Jokin, Kuske Rachel, Stepan Gabor

机构信息

Department of Applied Mechanics, Budapest University of Technology and Economics, Muegyetem rkp. 3, H1111 Budapest, Hungary.

IK4-IDEKO Dynamics and Control Department, Arriaga Kalea 2, E20870 Elgoibar, Spain.

出版信息

Philos Trans A Math Phys Eng Sci. 2019 Sep 9;377(2153):20180125. doi: 10.1098/rsta.2018.0125. Epub 2019 Jul 22.

Abstract

The unsafe zone in machining is a region of the parameter space where steady-state cutting operations may switch to regenerative chatter for certain perturbations, and vice versa. In the case of milling processes, this phenomenon is related to the existence of an unstable quasi-periodic oscillation, the in-sets of which limit the basin of attraction of the stable periodic motion that corresponds to the chatter-free cutting process. The mathematical model is a system of time-periodic nonlinear delay differential equations. It is studied by means of a nonlinear extension of the semidiscretization method, which enables the estimation of the parameter ranges where the unsafe (also called bistable) zones appear. The theoretical results are checked with thorough experimental work: first, step-by-step parameter variations are adapted to identify hysteresis loops, then harmonic burst excitations are used to estimate the extents of the unsafe zones. The hysteresis loops are accurately distinguished from the dynamic bifurcation phenomenon that is related to the dynamic effect of slowly varying parameters. The experimental results confirm the existence of the bistable parameter regions. This article is part of the theme issue 'Nonlinear dynamics of delay systems'.

摘要

加工中的不安全区域是参数空间中的一个区域,在该区域内,对于某些扰动,稳态切削操作可能会转变为再生颤振,反之亦然。在铣削加工过程中,这种现象与不稳定的准周期振荡的存在有关,其内部边界限制了对应于无颤振切削过程的稳定周期运动的吸引域。数学模型是一个时间周期非线性延迟微分方程组。通过半离散化方法的非线性扩展对其进行研究,该方法能够估计不安全(也称为双稳态)区域出现的参数范围。通过全面的实验工作对理论结果进行验证:首先,逐步改变参数以识别滞后环,然后使用谐波突发激励来估计不安全区域的范围。滞后环与与缓慢变化参数的动态效应相关的动态分岔现象能够准确区分开来。实验结果证实了双稳态参数区域的存在。本文是“延迟系统的非线性动力学”主题 issue 的一部分。

相似文献

1
Experimental observations on unsafe zones in milling processes.
Philos Trans A Math Phys Eng Sci. 2019 Sep 9;377(2153):20180125. doi: 10.1098/rsta.2018.0125. Epub 2019 Jul 22.
2
On the bistable zone of milling processes.
Philos Trans A Math Phys Eng Sci. 2015 Sep 28;373(2051). doi: 10.1098/rsta.2014.0409.
3
Basins of attraction of the bistable region of time-delayed cutting dynamics.
Phys Rev E. 2017 Sep;96(3-1):032205. doi: 10.1103/PhysRevE.96.032205. Epub 2017 Sep 6.
4
Stability Analysis in Milling Based on the Localized Differential Quadrature Method.
Micromachines (Basel). 2023 Dec 26;15(1):0. doi: 10.3390/mi15010054.
5
Experimental and simulation study on chatter stability region of integral impeller with non-uniform allowance.
Sci Prog. 2020 Jul-Sep;103(3):36850420933418. doi: 10.1177/0036850420933418.
6
On the analysis of the double Hopf bifurcation in machining processes via centre manifold reduction.
Proc Math Phys Eng Sci. 2017 Nov;473(2207):20170502. doi: 10.1098/rspa.2017.0502. Epub 2017 Nov 15.
7
Nonlinear dynamics of delay systems: an overview.
Philos Trans A Math Phys Eng Sci. 2019 Sep 9;377(2153):20180389. doi: 10.1098/rsta.2018.0389. Epub 2019 Jul 22.
8
The effect of state dependence in a delay differential equation model for the El Niño Southern Oscillation.
Philos Trans A Math Phys Eng Sci. 2019 Sep 9;377(2153):20180121. doi: 10.1098/rsta.2018.0121. Epub 2019 Jul 22.

引用本文的文献

3
Nonlinear dynamics of delay systems: an overview.
Philos Trans A Math Phys Eng Sci. 2019 Sep 9;377(2153):20180389. doi: 10.1098/rsta.2018.0389. Epub 2019 Jul 22.

本文引用的文献

1
On the analysis of the double Hopf bifurcation in machining processes via centre manifold reduction.
Proc Math Phys Eng Sci. 2017 Nov;473(2207):20170502. doi: 10.1098/rspa.2017.0502. Epub 2017 Nov 15.
2
On the bistable zone of milling processes.
Philos Trans A Math Phys Eng Sci. 2015 Sep 28;373(2051). doi: 10.1098/rsta.2014.0409.
3
Experimental continuation of periodic orbits through a fold.
Phys Rev Lett. 2008 Jun 20;100(24):244101. doi: 10.1103/PhysRevLett.100.244101. Epub 2008 Jun 19.
4
Experimental and theoretical progress in pipe flow transition.
Philos Trans A Math Phys Eng Sci. 2008 Aug 13;366(1876):2671-84. doi: 10.1098/rsta.2008.0063.
5
Global dynamics of low immersion high-speed milling.
Chaos. 2004 Dec;14(4):1069-77. doi: 10.1063/1.1807395.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验