Szalai Róbert, Stépán Gábor, Hogan S John
Department of Applied Mechanics, Budapest University of Technology and Economics, P. O. Box 91, H-1521, Budapest, Hungary.
Chaos. 2004 Dec;14(4):1069-77. doi: 10.1063/1.1807395.
In the case of low immersion high-speed milling, the ratio of time spent cutting to not cutting can be considered as a small parameter. In this case the classical regenerative vibration model of machine tool vibrations reduces to a simplified discrete mathematical model. The corresponding stability charts contain stability boundaries related to period doubling and Neimark-Sacker bifurcations. The subcriticality of both types of bifurcations is proved in this paper. Further, global period-2 orbits are found and analyzed. In connection with these orbits, the existence of chaotic motion is demonstrated for realistic high-speed milling parameters.