Suppr超能文献

On the bistable zone of milling processes.

作者信息

Dombovari Zoltan, Stepan Gabor

机构信息

Department of Applied Mechanics, Budapest University of Technology and Economics, Budapest 1521, Hungary Dynamics and Control Department, Ideko-IK4, Danobat Group, 20870 Elgoibar, Gipuzkoa, Spain

Department of Applied Mechanics, Budapest University of Technology and Economics, Budapest 1521, Hungary.

出版信息

Philos Trans A Math Phys Eng Sci. 2015 Sep 28;373(2051). doi: 10.1098/rsta.2014.0409.

Abstract

A modal-based model of milling machine tools subjected to time-periodic nonlinear cutting forces is introduced. The model describes the phenomenon of bistability for certain cutting parameters. In engineering, these parameter domains are referred to as unsafe zones, where steady-state milling may switch to chatter for certain perturbations. In mathematical terms, these are the parameter domains where the periodic solution of the corresponding nonlinear, time-periodic delay differential equation is linearly stable, but its domain of attraction is limited due to the existence of an unstable quasi-periodic solution emerging from a secondary Hopf bifurcation. A semi-numerical method is presented to identify the borders of these bistable zones by tracking the motion of the milling tool edges as they might leave the surface of the workpiece during the cutting operation. This requires the tracking of unstable quasi-periodic solutions and the checking of their grazing to a time-periodic switching surface in the infinite-dimensional phase space. As the parameters of the linear structural behaviour of the tool/machine tool system can be obtained by means of standard modal testing, the developed numerical algorithm provides efficient support for the design of milling processes with quick estimates of those parameter domains where chatter can still appear in spite of setting the parameters into linearly stable domains.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9849/4549941/596c67d3cc99/rsta20140409-g1.jpg

相似文献

1
On the bistable zone of milling processes.
Philos Trans A Math Phys Eng Sci. 2015 Sep 28;373(2051). doi: 10.1098/rsta.2014.0409.
2
Experimental observations on unsafe zones in milling processes.
Philos Trans A Math Phys Eng Sci. 2019 Sep 9;377(2153):20180125. doi: 10.1098/rsta.2018.0125. Epub 2019 Jul 22.
3
Basins of attraction of the bistable region of time-delayed cutting dynamics.
Phys Rev E. 2017 Sep;96(3-1):032205. doi: 10.1103/PhysRevE.96.032205. Epub 2017 Sep 6.
4
On the analysis of the double Hopf bifurcation in machining processes via centre manifold reduction.
Proc Math Phys Eng Sci. 2017 Nov;473(2207):20170502. doi: 10.1098/rspa.2017.0502. Epub 2017 Nov 15.
5
Essential chaotic dynamics of chatter in turning processes.
Chaos. 2020 May;30(5):053108. doi: 10.1063/1.5143216.
6
The diffusive Lotka-Volterra predator-prey system with delay.
Math Biosci. 2015 Dec;270(Pt A):30-40. doi: 10.1016/j.mbs.2015.09.010. Epub 2015 Oct 16.
7
Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey.
Math Biosci. 2016 Apr;274:58-72. doi: 10.1016/j.mbs.2016.02.003. Epub 2016 Feb 10.
9
Stability switches and multistability coexistence in a delay-coupled neural oscillators system.
J Theor Biol. 2012 Nov 21;313:98-114. doi: 10.1016/j.jtbi.2012.08.011. Epub 2012 Aug 18.
10
Phase resetting and bifurcation in the ventricular myocardium.
Biophys J. 1985 May;47(5):641-51. doi: 10.1016/S0006-3495(85)83960-6.

引用本文的文献

1
Experimental observations on unsafe zones in milling processes.
Philos Trans A Math Phys Eng Sci. 2019 Sep 9;377(2153):20180125. doi: 10.1098/rsta.2018.0125. Epub 2019 Jul 22.
2
On the analysis of the double Hopf bifurcation in machining processes via centre manifold reduction.
Proc Math Phys Eng Sci. 2017 Nov;473(2207):20170502. doi: 10.1098/rspa.2017.0502. Epub 2017 Nov 15.
3
The landscape of nonlinear structural dynamics: an introduction.
Philos Trans A Math Phys Eng Sci. 2015 Sep 28;373(2051). doi: 10.1098/rsta.2014.0400.

本文引用的文献

1
Global dynamics of low immersion high-speed milling.
Chaos. 2004 Dec;14(4):1069-77. doi: 10.1063/1.1807395.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验