Suppr超能文献

具有全局抑制和耦合延迟的神经网络同步的几何分析

Geometric analysis of synchronization in neuronal networks with global inhibition and coupling delays.

作者信息

Ryu Hwayeon, Campbell Sue Ann

机构信息

Department of Mathematics, University of Hartford, West Hartford, CT 06117, USA.

Department of Applied Mathematics, Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

出版信息

Philos Trans A Math Phys Eng Sci. 2019 Sep 9;377(2153):20180129. doi: 10.1098/rsta.2018.0129. Epub 2019 Jul 22.

Abstract

We study synaptically coupled neuronal networks to identify the role of coupling delays in network synchronized behaviour. We consider a network of excitable, relaxation oscillator neurons where two distinct populations, one excitatory and one inhibitory, are coupled with time-delayed synapses. The excitatory population is uncoupled, while the inhibitory population is tightly coupled without time delay. A geometric singular perturbation analysis yields existence and stability conditions for periodic solutions where the excitatory cells are synchronized and different phase relationships between the excitatory and inhibitory populations can occur, along with formulae for the periods of such solutions. In particular, we show that if there are no delays in the coupling, oscillations where the excitatory population is synchronized cannot occur. Numerical simulations are conducted to supplement and validate the analytical results. The analysis helps to explain how coupling delays in either excitatory or inhibitory synapses contribute to producing synchronized rhythms. This article is part of the theme issue 'Nonlinear dynamics of delay systems'.

摘要

我们研究突触耦合神经网络,以确定耦合延迟在网络同步行为中的作用。我们考虑一个由可兴奋的弛豫振荡器神经元组成的网络,其中两个不同的群体,一个兴奋性群体和一个抑制性群体,通过具有时间延迟的突触进行耦合。兴奋性群体未耦合,而抑制性群体紧密耦合且无时间延迟。几何奇异摄动分析给出了周期解的存在性和稳定性条件,其中兴奋性细胞同步,兴奋性和抑制性群体之间会出现不同的相位关系,同时还给出了此类解的周期公式。特别地,我们表明,如果耦合中没有延迟,兴奋性群体同步的振荡就不会发生。进行了数值模拟以补充和验证分析结果。该分析有助于解释兴奋性或抑制性突触中的耦合延迟如何有助于产生同步节律。本文是主题为“延迟系统的非线性动力学”的一部分。

相似文献

8
Delays in activity-based neural networks.基于活动的神经网络中的延迟。
Philos Trans A Math Phys Eng Sci. 2009 Mar 28;367(1891):1117-29. doi: 10.1098/rsta.2008.0256.
10

引用本文的文献

1
Nonlinear dynamics of delay systems: an overview.延迟系统的非线性动力学:综述
Philos Trans A Math Phys Eng Sci. 2019 Sep 9;377(2153):20180389. doi: 10.1098/rsta.2018.0389. Epub 2019 Jul 22.

本文引用的文献

1
3
Tasks for inhibitory interneurons in intact brain circuits.完整脑回路中抑制性中间神经元的任务。
Neuropharmacology. 2015 Jan;88:10-23. doi: 10.1016/j.neuropharm.2014.09.011. Epub 2014 Sep 17.
5
Cluster and group synchronization in delay-coupled networks.延迟耦合网络中的簇同步和组同步
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 2):016202. doi: 10.1103/PhysRevE.86.016202. Epub 2012 Jul 5.
6
Areal differences in diameter and length of corticofugal projections.皮质传出投射的直径和长度的区域差异。
Cereb Cortex. 2012 Jun;22(6):1463-72. doi: 10.1093/cercor/bhs011. Epub 2012 Feb 1.
7
Controlling synchrony by delay coupling in networks: from in-phase to splay and cluster states.通过网络中的延迟耦合控制同步:从同相到展开和簇状态。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Feb;81(2 Pt 2):025205. doi: 10.1103/PhysRevE.81.025205. Epub 2010 Feb 25.
10
Recurrent neuronal circuits in the neocortex.新皮层中的循环神经元回路。
Curr Biol. 2007 Jul 3;17(13):R496-500. doi: 10.1016/j.cub.2007.04.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验