Ryu Hwayeon, Campbell Sue Ann
Department of Mathematics, University of Hartford, West Hartford, CT 06117, USA.
Department of Applied Mathematics, Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
Philos Trans A Math Phys Eng Sci. 2019 Sep 9;377(2153):20180129. doi: 10.1098/rsta.2018.0129. Epub 2019 Jul 22.
We study synaptically coupled neuronal networks to identify the role of coupling delays in network synchronized behaviour. We consider a network of excitable, relaxation oscillator neurons where two distinct populations, one excitatory and one inhibitory, are coupled with time-delayed synapses. The excitatory population is uncoupled, while the inhibitory population is tightly coupled without time delay. A geometric singular perturbation analysis yields existence and stability conditions for periodic solutions where the excitatory cells are synchronized and different phase relationships between the excitatory and inhibitory populations can occur, along with formulae for the periods of such solutions. In particular, we show that if there are no delays in the coupling, oscillations where the excitatory population is synchronized cannot occur. Numerical simulations are conducted to supplement and validate the analytical results. The analysis helps to explain how coupling delays in either excitatory or inhibitory synapses contribute to producing synchronized rhythms. This article is part of the theme issue 'Nonlinear dynamics of delay systems'.
我们研究突触耦合神经网络,以确定耦合延迟在网络同步行为中的作用。我们考虑一个由可兴奋的弛豫振荡器神经元组成的网络,其中两个不同的群体,一个兴奋性群体和一个抑制性群体,通过具有时间延迟的突触进行耦合。兴奋性群体未耦合,而抑制性群体紧密耦合且无时间延迟。几何奇异摄动分析给出了周期解的存在性和稳定性条件,其中兴奋性细胞同步,兴奋性和抑制性群体之间会出现不同的相位关系,同时还给出了此类解的周期公式。特别地,我们表明,如果耦合中没有延迟,兴奋性群体同步的振荡就不会发生。进行了数值模拟以补充和验证分析结果。该分析有助于解释兴奋性或抑制性突触中的耦合延迟如何有助于产生同步节律。本文是主题为“延迟系统的非线性动力学”的一部分。