Suppr超能文献

基于无传感器转速控制的连续流左心室辅助装置系统。

A Sensorless Rotational Speed-Based Control System for Continuous Flow Left Ventricular Assist Devices.

出版信息

IEEE Trans Biomed Eng. 2020 Apr;67(4):1050-1060. doi: 10.1109/TBME.2019.2928826. Epub 2019 Jul 19.

Abstract

OBJECTIVE

Continuous Flow Left Ventricular Assist Devices (CFLVAD) are circulatory support devices that are implanted in patients with end-stage heart failure. We developed a novel control algorithm for CFLVAD to maintain physiologic perfusion while avoiding ventricular suction using only the intrinsic pump measurement of pump speed and without utilizing model-based estimation.

METHODS

The controller objective is to maintain a differential pump speed setpoint. A mathematical model of the circulatory system coupled with a model of a CFLVAD was used to test the control algorithm in silico. Robustness and efficacy were evaluated by comparing the proposed control algorithm to constant speed control, differential pump pressure control, mean aortic pressure control, and ventricular end diastolic pressure control during (1) rest and exercise conditions, (2) a rapid eight-fold increase in pulmonary vascular resistance under rest and exercise, (3) transitions from rest to exercise, and exercise to rest, (4) safe mode during left ventricular asystole, and (5) RPM measurement noise of 1% to 10% for (1) to (4).

RESULTS AND CONCLUSION

The control algorithm provided adequate perfusion while preventing ventricular suction for all test conditions. Performance did not deteriorate significantly with pump speed measurement noise of up to 6%. The safe mode successfully detected asystole and maintained adequate perfusion to sustain life even when the differential pump speed was low.

SIGNIFICANCE

Maintaining a constant differential pump speed can simultaneously achieve physiologic perfusion and suction prevention without needing unreliable, direct measurements of flow or pressure, or complex parameter or model-based estimation techniques.

摘要

目的

连续流左心室辅助装置(CFLVAD)是植入终末期心力衰竭患者体内的循环支持装置。我们开发了一种新型 CFLVAD 控制算法,仅使用泵速的固有泵测量值,而不利用基于模型的估计值,即可维持生理灌注并避免心室抽吸。

方法

控制器的目标是维持差速泵设定点。使用循环系统的数学模型和 CFLVAD 模型对控制算法进行了计算机模拟测试。通过比较所提出的控制算法与恒速控制、差速泵压控制、平均主动脉压控制和心室舒张末期压控制在(1)休息和运动状态、(2)休息和运动时肺血管阻力快速增加 8 倍、(3)从休息到运动和从运动到休息的过渡、(4)左心室停搏时的安全模式以及(5)RPM 测量噪声为 1%至 10%的情况下(1)至(4)的稳健性和功效来评估控制算法。

结果和结论

对于所有测试条件,该控制算法都能提供足够的灌注,同时防止心室抽吸。即使在泵速测量噪声高达 6%的情况下,性能也不会显著恶化。安全模式成功检测到停搏,并在差速泵速较低时维持足够的灌注以维持生命。

意义

维持恒定的差速泵速可以在不依赖不可靠的直接流量或压力测量值或复杂参数或基于模型的估计技术的情况下,同时实现生理灌注和防止抽吸。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验