Suppr超能文献

基于矩阵分解和深度先验正则化的高光谱图像去噪

Hyperspectral Image Denoising via Matrix Factorization and Deep Prior Regularization.

作者信息

Lin Baihong, Tao Xiaoming, Lu Jianhua

出版信息

IEEE Trans Image Process. 2019 Jul 19. doi: 10.1109/TIP.2019.2928627.

Abstract

Deep learning has been successfully introduced for 2D-image denoising, but it is still unsatisfactory for hyperspectral image (HSI) denosing due to the unacceptable computational complexity of the end-to-end training process and the difficulty of building a universal 3D-image training dataset. In this paper, instead of developing an end-to-end deep learning denoising network, we propose a hyperspectral image denoising framework for the removal of mixed Gaussian impulse noise, in which the denoising problem is modeled as a convolutional neural network (CNN) constrained non-negative matrix factorization problem. Using the proximal alternating linearized minimization, the optimization can be divided into three steps: the update of the spectral matrix, the update of the abundance matrix and the estimation of the sparse noise. Then, we design the CNN architecture and proposed two training schemes, which can allow the CNN to be trained with a 2D-image dataset. Compared with the state-of-the-art denoising methods, the proposed method has relatively good performance on the removal of the Gaussian and mixed Gaussian impulse noises. More importantly, the proposed model can be only trained once by a 2D-image dataset, but can be used to denoise HSIs with different numbers of channel bands.

摘要

深度学习已成功应用于二维图像去噪,但由于端到端训练过程中难以接受的计算复杂度以及构建通用三维图像训练数据集的困难,其在高光谱图像(HSI)去噪方面仍不尽人意。在本文中,我们并非开发一个端到端的深度学习去噪网络,而是提出了一种用于去除混合高斯脉冲噪声的高光谱图像去噪框架,其中去噪问题被建模为一个卷积神经网络(CNN)约束的非负矩阵分解问题。使用近端交替线性化最小化方法,优化可分为三个步骤:光谱矩阵的更新、丰度矩阵的更新以及稀疏噪声的估计。然后,我们设计了CNN架构并提出了两种训练方案,这可以使CNN使用二维图像数据集进行训练。与当前最先进的去噪方法相比,所提出的方法在去除高斯和混合高斯脉冲噪声方面具有相对较好的性能。更重要的是,所提出的模型仅通过二维图像数据集训练一次,但可用于对具有不同通道数的高光谱图像进行去噪。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验