Ding Derui, Wang Zidong, Han Qing-Long
IEEE Trans Cybern. 2020 Aug;50(8):3719-3730. doi: 10.1109/TCYB.2019.2927471. Epub 2019 Jul 22.
In this paper, the neural-network (NN)-based consensus control problem is investigated for a class of discrete-time nonlinear multiagent systems (MASs) with a leader subject to input constraints. Relative measurements related to local tracking errors are collected via some smart sensors. A local nonquadratic cost function is first introduced to evaluate the control performance with input constraints. Then, in view of the relative measurements, an NN-based observer under the event-triggered mechanism is designed to reconstruct the dynamics of the local tracking errors, where the adopted event-triggered condition has a time-dependent threshold and the weight of NNs is updated via a new adaptive tuning law catering to the employed event-triggered mechanism. Furthermore, an ideal control policy is developed for the addressed consensus control problem while minimizing the prescribed local nonquadratic cost function. Moreover, an actor-critic NN scheme with online learning is employed to realize the obtained control policy, where the critic NN is a three-layer structure with powerful approximation capability. Through extensive mathematical analysis, the consensus condition is established for the underlying MAS, and the boundedness of the estimated errors is proven for actor and critic NN weights. In addition, the effect from the adopted event-triggered mechanism on the local cost is thoroughly discussed, and the upper bound of the corresponding increment is derived in comparison with time-triggered cases. Finally, a simulation example is utilized to illustrate the usefulness of the proposed controller design scheme.
本文研究了一类具有领导者且受输入约束的离散时间非线性多智能体系统(MASs)基于神经网络(NN)的一致性控制问题。通过一些智能传感器收集与局部跟踪误差相关的相对测量值。首先引入局部非二次代价函数来评估输入约束下的控制性能。然后,鉴于相对测量值,设计了一种基于事件触发机制的基于神经网络的观测器来重构局部跟踪误差的动态,其中所采用的事件触发条件具有与时间相关的阈值,并且神经网络的权重通过一种新的自适应调整律进行更新,该调整律适用于所采用的事件触发机制。此外,针对所研究的一致性控制问题,在最小化规定的局部非二次代价函数的同时,制定了一种理想的控制策略。而且,采用具有在线学习能力的演员 - 评论家神经网络方案来实现所得到的控制策略,其中评论家神经网络是具有强大逼近能力的三层结构。通过广泛的数学分析,为底层多智能体系统建立了一致性条件,并证明了演员和评论家神经网络权重估计误差的有界性。此外,深入讨论了所采用的事件触发机制对局部代价的影响,并与时间触发情况相比,推导了相应增量的上界。最后,通过一个仿真例子来说明所提出的控制器设计方案的有效性。