Suppr超能文献

用于高速表面电容式钠离子存储的碳的多个活性位点

Multiple Active Sites of Carbon for High-Rate Surface-Capacitive Sodium-Ion Storage.

作者信息

Wang Guang, Shao Meng, Ding Huarui, Qi Ying, Lian Jiabiao, Li Sheng, Qiu Jingxia, Li Huaming, Huo Fengwei

机构信息

Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P. R. China.

Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2019 Sep 16;58(38):13584-13589. doi: 10.1002/anie.201908159. Epub 2019 Aug 7.

Abstract

Although sodium ion batteries (SIBs) possess many beneficial features, their rate performance, cycling stability, and safety need improvement for commercial applications. Based on the mechanisms of the sodium ions storage in carbon materials, herein we present a multiple active sites decorated amorphous carbon (MAC) with rich structural defects and heteroatom doping as an anode material for SIBs. The full utilization of fast bonding-debonding processes between the active sites and sodium ions could bring a capacitive strategy to achieve superior sodium storage properties. Consequently, after materials characterization and electrochemical evaluation, the as-prepared electrode could deliver high rate and long-life performance. This active-site-related design could be extended to other types of electrode materials, thereby contributing to future practical SIB applications.

摘要

尽管钠离子电池(SIBs)具有许多有益特性,但它们的倍率性能、循环稳定性和安全性仍需改进以用于商业应用。基于钠离子在碳材料中存储的机制,在此我们提出一种具有丰富结构缺陷和杂原子掺杂的多活性位点修饰非晶碳(MAC)作为SIBs的负极材料。活性位点与钠离子之间快速的键合-去键合过程的充分利用可以带来一种电容策略,以实现优异的钠存储性能。因此,经过材料表征和电化学评估,所制备的电极能够实现高倍率和长寿命性能。这种与活性位点相关的设计可以扩展到其他类型的电极材料,从而有助于未来钠离子电池的实际应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验