Carpena-Núñez Jennifer, Boscoboinik Jorge Anibal, Saber Sammy, Rao Rahul, Zhong Jian-Qiang, Maschmann Matthew R, Kidambi Piran R, Dee Nicholas T, Zakharov Dmitri N, Hart A John, Stach Eric A, Maruyama Benji
Materials and Manufacturing Directorate, Air Force Research Laboratory , Wright-Patterson Air Force Base , Dayton , Ohio 45433 , United States.
Center for Functional Nanomaterials , Brookhaven National Laboratory , Upton , New York 11973 , United States.
ACS Nano. 2019 Aug 27;13(8):8736-8748. doi: 10.1021/acsnano.9b01382. Epub 2019 Jul 22.
Limited understanding of the factors influencing the yield of carbon nanotubes (CNTs) relative to the number of catalyst particles remains an important barrier to their large-scale production with high quality, and to tailoring CNT properties for applications. This lack of understanding is evident in the frequent use of Edisonian approaches to give high-yield CNT growth, and in the sometimes-confusing influence of trace residues on the reactor walls. In order to create conditions wherein CNT yield is reproducible and to enable large-scale and reliable CNT synthesis, it is imperative to understand-fundamentally-how these common practices impact catalytic activity and thus CNT number density. Herein, we use ambient pressure-X-ray photoelectron spectroscopy (AP-XPS) to reveal the influence of carbon and hydrogen on the coupling between catalyst reduction and CNT nucleation, from an iron catalyst film. We observe a positive correlation between the degree of catalyst reduction and the density of vertically aligned CNTs (forests), verifying that effective catalyst reduction is critical to CNT nucleation and to the resulting CNT growth yield. We demonstrate that the extent of catalyst reduction is the reason for low CNT number density and for lack of self-organization, lift-off, and growth of CNT forests. We also show that hydrocarbon byproducts from consecutive growths can facilitate catalyst reduction and increase CNT number density significantly. These findings suggest that common practices used in the field-such as reactor preconditioning-aid in the reduction of the catalyst population, thus improving CNT number density and enabling the growth of dense forests. Our results also motivate future work using AP-XPS and complementary metrology tools to optimize CNT growth conditions according to the catalyst chemical state.
相对于催化剂颗粒数量,人们对影响碳纳米管(CNT)产量的因素了解有限,这仍然是高质量大规模生产碳纳米管以及针对应用定制碳纳米管性能的一个重要障碍。这种认识不足在频繁采用爱迪生式方法实现高产率碳纳米管生长以及反应器壁上痕量残留物有时令人困惑的影响中显而易见。为了创造碳纳米管产量可重现的条件,并实现大规模可靠的碳纳米管合成,从根本上理解这些常见做法如何影响催化活性进而影响碳纳米管数密度至关重要。在此,我们使用常压X射线光电子能谱(AP-XPS)来揭示碳和氢对铁催化剂薄膜中催化剂还原与碳纳米管成核之间耦合的影响。我们观察到催化剂还原程度与垂直排列的碳纳米管(森林)密度之间存在正相关,证实有效的催化剂还原对于碳纳米管成核和由此产生的碳纳米管生长产量至关重要。我们证明催化剂还原程度是碳纳米管数密度低以及碳纳米管森林缺乏自组织、脱离和生长的原因。我们还表明连续生长产生的烃副产物可以促进催化剂还原并显著增加碳纳米管数密度。这些发现表明该领域的常见做法——如反应器预处理——有助于减少催化剂总量,从而提高碳纳米管数密度并实现茂密森林状生长。我们的结果还促使未来使用AP-XPS和互补计量工具根据催化剂化学状态优化碳纳米管生长条件。