Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States.
Department of Chemistry , University of North Carolina at Chapel Hill , Murray Hall 2202B , Chapel Hill , North Carolina 27599-3290 , United States.
J Am Chem Soc. 2019 Aug 28;141(34):13625-13634. doi: 10.1021/jacs.9b06244. Epub 2019 Aug 5.
Enantioselective catalysis of excited-state photoreactions remains a substantial challenge in synthetic chemistry, and intermolecular photoreactions have proven especially difficult to conduct in a stereocontrolled fashion. Herein, we report a highly enantioselective intermolecular [2 + 2] cycloaddition of 3-alkoxyquinolones catalyzed by a chiral hydrogen-bonding iridium photosensitizer. Enantioselectivities as high as 99% ee were measured in reactions with a range of maleimides and other electron-deficient alkene reaction partners. An array of kinetic, spectroscopic, and computational studies supports a mechanism in which the photocatalyst and quinolone form a hydrogen-bonded complex to control selectivity, yet upon photoexcitation of this complex, energy transfer sensitization of maleimide is preferred. The sensitized maleimide then reacts with the hydrogen-bonded quinolone-photocatalyst complex to afford a highly enantioenriched cycloadduct. This finding contradicts a long-standing tenet of enantioselective photochemistry that held that stereoselective photoreactions require strong preassociation to the sensitized substrate in order to overcome the short lifetimes of electronically excited organic molecules. This system therefore suggests that a broader range of alternate design strategies for asymmetric photocatalysis might be possible.
在合成化学中,激发态光反应的对映选择性催化仍然是一个巨大的挑战,并且已经证明,分子间光反应特别难以以立体控制的方式进行。在此,我们报告了一种由手性氢键铱光引发剂催化的高对映选择性的 3-烷氧基喹啉酮的分子间[2+2]环加成反应。在与一系列马来酰亚胺和其他缺电子烯烃反应伙伴的反应中,测量到高达 99%ee 的对映选择性。一系列动力学、光谱和计算研究支持这样一种机制,即光催化剂和喹啉形成氢键复合物来控制选择性,但在该复合物的光激发下,马来酰亚胺的能量转移敏化是首选的。然后,敏化的马来酰亚胺与氢键合的喹啉-光催化剂复合物反应,得到高度对映富集的环加成产物。这一发现与对映选择性光化学的一个长期原则相矛盾,该原则认为,立体选择性光反应需要与敏化底物的强预结合,以克服电子激发有机分子的短寿命。因此,该体系表明,对于不对称光催化,可能存在更广泛的替代设计策略。