Suppr超能文献

手性光催化剂结构在不对称光化学反应中的应用。

Chiral Photocatalyst Structures in Asymmetric Photochemical Synthesis.

机构信息

Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.

出版信息

Chem Rev. 2022 Jan 26;122(2):1654-1716. doi: 10.1021/acs.chemrev.1c00467. Epub 2021 Oct 4.

Abstract

Asymmetric catalysis is a major theme of research in contemporary synthetic organic chemistry. The discovery of general strategies for highly enantioselective photochemical reactions, however, has been a relatively recent development, and the variety of photoreactions that can be conducted in a stereocontrolled manner is consequently somewhat limited. Asymmetric photocatalysis is complicated by the short lifetimes and high reactivities characteristic of photogenerated reactive intermediates; the design of catalyst architectures that can provide effective enantiodifferentiating environments for these intermediates while minimizing the participation of uncontrolled racemic background processes has proven to be a key challenge for progress in this field. This review provides a summary of the chiral catalyst structures that have been studied for solution-phase asymmetric photochemistry, including chiral organic sensitizers, inorganic chromophores, and soluble macromolecules. While some of these photocatalysts are derived from privileged catalyst structures that are effective for both ground-state and photochemical transformations, others are structural designs unique to photocatalysis and offer insight into the logic required for highly effective stereocontrolled photocatalysis.

摘要

不对称催化是当代合成有机化学的一个主要研究课题。然而,通用的高对映选择性光化学反应策略的发现是相对较新的发展,因此能够以立体控制方式进行的光反应的种类有些有限。不对称光催化由于光生反应中间体的寿命短和反应性高而变得复杂;设计能够为这些中间体提供有效区分对映体的环境,同时最小化不受控制的外消旋背景过程参与的催化剂结构已被证明是该领域取得进展的关键挑战。本综述提供了用于溶液相不对称光化学的手性催化剂结构的总结,包括手性有机敏化剂、无机生色团和可溶性聚合物。虽然其中一些光催化剂源自对基态和光化学转化均有效的特权催化剂结构,但其他结构设计是光催化特有的,为高效立体控制光催化所需的逻辑提供了见解。

相似文献

1
Chiral Photocatalyst Structures in Asymmetric Photochemical Synthesis.
Chem Rev. 2022 Jan 26;122(2):1654-1716. doi: 10.1021/acs.chemrev.1c00467. Epub 2021 Oct 4.
2
Photochemical Stereocontrol Using Tandem Photoredox-Chiral Lewis Acid Catalysis.
Acc Chem Res. 2016 Oct 18;49(10):2307-2315. doi: 10.1021/acs.accounts.6b00280. Epub 2016 Aug 9.
4
Cooperative Stereoinduction in Asymmetric Photocatalysis.
J Am Chem Soc. 2022 Mar 9;144(9):4206-4213. doi: 10.1021/jacs.2c00063. Epub 2022 Feb 22.
5
Asymmetric Photocatalysis with Bis-cyclometalated Rhodium Complexes.
Acc Chem Res. 2019 Mar 19;52(3):833-847. doi: 10.1021/acs.accounts.9b00028. Epub 2019 Mar 6.
6
Enantioselective catalysis of photochemical reactions.
Angew Chem Int Ed Engl. 2015 Mar 23;54(13):3872-90. doi: 10.1002/anie.201411409. Epub 2015 Feb 27.
7
Asymmetric photoredox transition-metal catalysis activated by visible light.
Nature. 2014 Nov 6;515(7525):100-3. doi: 10.1038/nature13892.
8
Asymmetric Catalysis within the Chiral Confined Space of Metal-Organic Architectures.
Small. 2019 Aug;15(32):e1804770. doi: 10.1002/smll.201804770. Epub 2019 Feb 4.
10
A Chiral Metal Photocatalyst Architecture for Highly Enantioselective Photoreactions.
Angew Chem Int Ed Engl. 2016 Feb 12;55(7):2304-6. doi: 10.1002/anie.201511443. Epub 2016 Jan 22.

引用本文的文献

3
Privileged Chiral Photocatalysts.
Angew Chem Int Ed Engl. 2025 Sep 1;64(36):e202513320. doi: 10.1002/anie.202513320. Epub 2025 Aug 1.
5
Breaking Kasha's Rule to Enable Higher Reactivity in Photoredox Catalysis.
J Am Chem Soc. 2025 Jul 30;147(30):26477-26485. doi: 10.1021/jacs.5c06115. Epub 2025 Jul 17.
6
Kinetic Resolution of Heterocyclic Lactams by a Photocatalytic Cobalt-Catalyzed Dehydrogenation.
J Am Chem Soc. 2025 Jul 23;147(29):25148-25152. doi: 10.1021/jacs.5c07524. Epub 2025 Jul 10.
8
Synthesis and Theoretical Studies of Chiral Dinuclear Iridium Complexes Containing BINAP Ligands.
ACS Omega. 2025 May 21;10(22):23427-23432. doi: 10.1021/acsomega.5c01889. eCollection 2025 Jun 10.
10
Light-enabled intramolecular [2 + 2] cycloaddition via photoactivation of simple alkenylboronic esters.
Beilstein J Org Chem. 2025 Apr 30;21:854-863. doi: 10.3762/bjoc.21.69. eCollection 2025.

本文引用的文献

1
Catalytic α-Deracemization of Ketones Enabled by Photoredox Deprotonation and Enantioselective Protonation.
J Am Chem Soc. 2021 Aug 25;143(33):13393-13400. doi: 10.1021/jacs.1c06637. Epub 2021 Aug 14.
2
Photoinduced Copper-Catalyzed Asymmetric C-O Cross-Coupling.
J Am Chem Soc. 2021 Aug 25;143(33):13382-13392. doi: 10.1021/jacs.1c06535. Epub 2021 Aug 10.
3
Visible Light Induced Cu-Catalyzed Asymmetric C(sp)-H Alkylation.
J Am Chem Soc. 2021 Aug 18;143(32):12777-12783. doi: 10.1021/jacs.1c05890. Epub 2021 Aug 5.
5
6
Photochemical Deracemization of Primary Allene Amides by Triplet Energy Transfer: A Combined Synthetic and Theoretical Study.
J Am Chem Soc. 2021 Jul 28;143(29):11209-11217. doi: 10.1021/jacs.1c05286. Epub 2021 Jul 19.
7
Intermolecular [2 + 2] Photocycloaddition of α,β-Unsaturated Sulfones: Catalyst-Free Reaction and Catalytic Variants.
Org Lett. 2021 Aug 6;23(15):5674-5678. doi: 10.1021/acs.orglett.1c01794. Epub 2021 Jul 15.
8
Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity.
Nature. 2021 Aug;596(7871):250-256. doi: 10.1038/s41586-021-03730-w. Epub 2021 Jun 28.
9
Catalytic asymmetric C-C cross-couplings enabled by photoexcitation.
Nat Chem. 2021 Jun;13(6):575-580. doi: 10.1038/s41557-021-00683-5. Epub 2021 May 24.
10
Asymmetric [2+2] photocycloaddition via charge transfer complex for the synthesis of tricyclic chiral ethers.
Chem Commun (Camb). 2021 Mar 25;57(24):3046-3049. doi: 10.1039/d1cc00035g. Epub 2021 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验