Suppr超能文献

在真实世界中减少低血糖:门诊胰岛素依赖队列中预测性低血糖暂停技术的回顾性分析。

Reducing Hypoglycemia in the Real World: A Retrospective Analysis of Predictive Low-Glucose Suspend Technology in an Ambulatory Insulin-Dependent Cohort.

机构信息

Design Lab, University of California San Diego, La Jolla, California.

Tandem Diabetes Care, San Diego, California.

出版信息

Diabetes Technol Ther. 2019 Sep;21(9):478-484. doi: 10.1089/dia.2019.0190. Epub 2019 Aug 1.

Abstract

Analyze real-world usage and impact of a predictive low-glucose suspend (PLGS) insulin delivery system for maintenance of euglycemia and prevention of hypoglycemic events in people with insulin-dependent diabetes. Retrospective analysis of Tandem Basal-IQ users who uploaded at least 21 days of PLGS usage data between August 31, 2018, and March 14, 2019 ( = 8132). Insulin delivery and sensor-glucose concentrations were analyzed. The times spent below 70 mg/dL, between 70 and 180 mg/dL, and above 180 mg/dL were assessed. Subgroup analyses were conducted to examine matched pre-/postoutcomes with experienced users ( = 1371) and performance over time for a mixed subgroup with >9 weeks of data ( = 3563). The mean age of patients was 32.4 years, 52% were female, 96% had type 1 diabetes, and 4% had type 2 diabetes. Mean duration on PLGS was 65 days. Algorithm introduction led to a 45% median relative risk reduction in sensor time <70 mg/dL, pre/post (% <70:2.0, 1.1), while the mean glucose remained stable (168 and 168 mg/dL). Mean frequency of hypoglycemic events decreased from one every 9 days to one every 30 days. Total daily insulin dose decreased from 43.4 to 42.3 U in the pre/post subgroup. Manual override of the system was low (4.5%). The number of daily suspensions remained stable (4.9). Introduction of PLGS resulted in effective and sustained prevention of hypoglycemia without a significant increase in mean blood glucose and may be considered for people with type 1 diabetes at risk for hypoglycemia.

摘要

分析预测性低血糖暂停(PLGS)胰岛素输送系统在依赖胰岛素的糖尿病患者中维持血糖正常和预防低血糖事件的真实世界使用情况和影响。回顾性分析了 2018 年 8 月 31 日至 2019 年 3 月 14 日期间至少上传了 21 天 PLGS 使用数据的 Tandem Basal-IQ 用户(n=8132)。分析了胰岛素输送和传感器血糖浓度。评估了低于 70mg/dL、70-180mg/dL 和高于 180mg/dL 的时间。进行了亚组分析,以检查有经验的用户(n=1371)的匹配预/后结果和具有超过 9 周数据的混合亚组(n=3563)的随时间的表现。患者的平均年龄为 32.4 岁,52%为女性,96%患有 1 型糖尿病,4%患有 2 型糖尿病。PLGS 的平均使用时间为 65 天。算法引入后,传感器时间<70mg/dL 的中位相对风险降低了 45%(2.0,1.1),而平均血糖保持稳定(168 和 168mg/dL)。低血糖事件的平均频率从每 9 天一次减少到每 30 天一次。预/后亚组的每日胰岛素剂量从 43.4U 减少到 42.3U。系统的手动干预很低(4.5%)。每日暂停次数保持稳定(4.9)。PLGS 的引入有效地持续预防了低血糖,而平均血糖没有显著升高,对于有低血糖风险的 1 型糖尿病患者可以考虑使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14eb/6708266/1dc4c01e679f/fig-2.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验