Suppr超能文献

基于动态规划的三维光声介观皮肤表面检测。

Skin Surface Detection in 3D Optoacoustic Mesoscopy Based on Dynamic Programming.

出版信息

IEEE Trans Med Imaging. 2020 Feb;39(2):458-467. doi: 10.1109/TMI.2019.2928393. Epub 2019 Jul 12.

Abstract

Optoacoustic (photoacoustic) mesoscopy offers unique capabilities in skin imaging and resolves skin features associated with detection, diagnosis, and management of disease. A critical first step in the quantitative analysis of clinical optoacoustic images is to identify the skin surface in a rapid, reliable, and automated manner. Nevertheless, most common edge- and surface-detection algorithms cannot reliably detect the skin surface on 3D raster-scan optoacoustic mesoscopy (RSOM) images, due to discontinuities and diffuse interfaces in the image. We present herein a novel dynamic programming approach that extracts the skin boundary as a 2D surface in one single step, as opposed to consecutive extraction of several independent 1D contours. A domain-specific energy function is introduced, taking into account the properties of volumetric optoacoustic mesoscopy images. The accuracy of the proposed method is validated on scans of the volar forearm of 19 volunteers with different skin complexions, for which the skin surface has been traced manually to provide a reference. In addition, the robustness and the limitations of the method are demonstrated on data where the skin boundaries are low-contrast or ill-defined. The automatic skin surface detection method can improve the speed and accuracy in the analysis of quantitative features seen on the RSOM images and accelerate the clinical translation of the technique. Our method can likely be extended to identify other types of surfaces in the RSOM and other imaging modalities.

摘要

光声(光声)介观成像在皮肤成像中具有独特的功能,可解析与疾病检测、诊断和管理相关的皮肤特征。对临床光声图像进行定量分析的关键第一步是快速、可靠和自动地识别皮肤表面。然而,由于图像中的不连续性和扩散界面,大多数常见的边缘和表面检测算法无法可靠地检测 3D 光栅扫描光声介观成像 (RSOM) 图像上的皮肤表面。我们在此提出了一种新颖的动态规划方法,该方法可以一步提取皮肤边界作为 2D 表面,而不是连续提取几个独立的 1D 轮廓。引入了一个特定于域的能量函数,考虑了体积光声介观成像图像的特性。该方法的准确性在 19 名志愿者的掌侧前臂扫描上得到验证,志愿者的皮肤肤色不同,手动追踪皮肤表面以提供参考。此外,还在皮肤边界对比度低或定义不明确的数据上演示了该方法的鲁棒性和局限性。自动皮肤表面检测方法可以提高 RSOM 图像上定量特征分析的速度和准确性,并加速该技术的临床转化。我们的方法可能可以扩展到 RSOM 和其他成像模式中识别其他类型的表面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验