Suppr超能文献

压缩感知中分数函数惩罚的最小化

Minimization of Fraction Function Penalty in Compressed Sensing.

作者信息

Li Haiyang, Zhang Qian, Cui Angang, Peng Jigen

出版信息

IEEE Trans Neural Netw Learn Syst. 2020 May;31(5):1626-1637. doi: 10.1109/TNNLS.2019.2921404. Epub 2019 Jul 15.

Abstract

In this paper, we study the minimization problem of a non-convex sparsity-promoting penalty function, i.e., fraction function, in compressed sensing. First, we discuss the equivalence of l minimization and fraction function minimization. It is proved that the optimal solution to fraction function minimization solves l minimization and the optimal solution to the regularization problem also solves fraction function minimization if the certain conditions are satisfied, which is similar to the regularization problem in a convex optimization theory. Second, we study the properties of the optimal solution to the regularization problem, including the first-order and second-order optimality conditions and the lower and upper bounds of the absolute value for its nonzero entries. Finally, we derive the closed-form representation of the optimal solution to the regularization problem and propose an iterative FP thresholding algorithm to solve the regularization problem. We also provide a series of experiments to assess the performance of the FP algorithm, and the experimental results show that the FP algorithm performs well in sparse signal recovery with and without measurement noise.

摘要

在本文中,我们研究了压缩感知中一个非凸稀疏促进惩罚函数(即分数函数)的最小化问题。首先,我们讨论了(l)最小化与分数函数最小化的等价性。证明了如果满足某些条件,分数函数最小化的最优解能解决(l)最小化问题,并且正则化问题的最优解也能解决分数函数最小化问题,这与凸优化理论中的正则化问题类似。其次,我们研究了正则化问题最优解的性质,包括一阶和二阶最优性条件以及其非零项绝对值的上下界。最后,我们推导了正则化问题最优解的闭式表示,并提出了一种迭代的FP阈值算法来解决正则化问题。我们还提供了一系列实验来评估FP算法的性能,实验结果表明FP算法在有测量噪声和无测量噪声的稀疏信号恢复中均表现良好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验