Suppr超能文献

L1/2 正则化:一种阈值表示理论和快速求解器。

L1/2 regularization: a thresholding representation theory and a fast solver.

出版信息

IEEE Trans Neural Netw Learn Syst. 2012 Jul;23(7):1013-27. doi: 10.1109/TNNLS.2012.2197412.

Abstract

The special importance of L1/2 regularization has been recognized in recent studies on sparse modeling (particularly on compressed sensing). The L1/2 regularization, however, leads to a nonconvex, nonsmooth, and non-Lipschitz optimization problem that is difficult to solve fast and efficiently. In this paper, through developing a threshoding representation theory for L1/2 regularization, we propose an iterative half thresholding algorithm for fast solution of L1/2 regularization, corresponding to the well-known iterative soft thresholding algorithm for L1 regularization, and the iterative hard thresholding algorithm for L0 regularization. We prove the existence of the resolvent of gradient of ||x||1/2(1/2), calculate its analytic expression, and establish an alternative feature theorem on solutions of L1/2 regularization, based on which a thresholding representation of solutions of L1/2 regularization is derived and an optimal regularization parameter setting rule is formulated. The developed theory provides a successful practice of extension of the well- known Moreau's proximity forward-backward splitting theory to the L1/2 regularization case. We verify the convergence of the iterative half thresholding algorithm and provide a series of experiments to assess performance of the algorithm. The experiments show that the half algorithm is effective, efficient, and can be accepted as a fast solver for L1/2 regularization. With the new algorithm, we conduct a phase diagram study to further demonstrate the superiority of L1/2 regularization over L1 regularization.

摘要

L1/2 正则化的特殊重要性在最近关于稀疏建模(特别是压缩感知)的研究中得到了认可。然而,L1/2 正则化导致了非凸、非光滑和非 Lipschitz 优化问题,难以快速有效地解决。在本文中,通过开发 L1/2 正则化的阈值表示理论,我们提出了一种用于快速求解 L1/2 正则化的迭代半阈值算法,对应于著名的用于 L1 正则化的迭代软阈值算法和用于 L0 正则化的迭代硬阈值算法。我们证明了梯度的预解式||x||1/2(1/2)的存在性,计算了它的解析表达式,并基于此建立了 L1/2 正则化解的替代特征定理,推导出了 L1/2 正则化解的阈值表示,并提出了最优正则化参数设定规则。所发展的理论成功地将著名的 Moreau 的邻近向前-向后分裂理论扩展到 L1/2 正则化情况。我们验证了迭代半阈值算法的收敛性,并提供了一系列实验来评估算法的性能。实验表明,半算法是有效的、高效的,可以作为 L1/2 正则化的快速求解器。利用新算法,我们进行了相图研究,进一步证明了 L1/2 正则化优于 L1 正则化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验