Suppr超能文献

基于粒子的模拟方法对人类关于液体流动的直觉进行建模。

Modeling human intuitions about liquid flow with particle-based simulation.

机构信息

Department of Brain and Cognitive Sciences, Massachusetts Institue of Technology, Cambridge, Massachusetts, United States of America.

Center for Brains, Minds and Machines (CBMM), Massachusetts Institue of Technology, Cambridge, Massachusetts, United States of America.

出版信息

PLoS Comput Biol. 2019 Jul 22;15(7):e1007210. doi: 10.1371/journal.pcbi.1007210. eCollection 2019 Jul.

Abstract

Humans can easily describe, imagine, and, crucially, predict a wide variety of behaviors of liquids-splashing, squirting, gushing, sloshing, soaking, dripping, draining, trickling, pooling, and pouring-despite tremendous variability in their material and dynamical properties. Here we propose and test a computational model of how people perceive and predict these liquid dynamics, based on coarse approximate simulations of fluids as collections of interacting particles. Our model is analogous to a "game engine in the head", drawing on techniques for interactive simulations (as in video games) that optimize for efficiency and natural appearance rather than physical accuracy. In two behavioral experiments, we found that the model accurately captured people's predictions about how liquids flow among complex solid obstacles, and was significantly better than several alternatives based on simple heuristics and deep neural networks. Our model was also able to explain how people's predictions varied as a function of the liquids' properties (e.g., viscosity and stickiness). Together, the model and empirical results extend the recent proposal that human physical scene understanding for the dynamics of rigid, solid objects can be supported by approximate probabilistic simulation, to the more complex and unexplored domain of fluid dynamics.

摘要

尽管液体的物质和动力学特性存在巨大差异,但人类可以轻松地描述、想象,并且关键是可以预测各种液体行为——飞溅、喷射、涌出、晃动、浸泡、滴落、沥干、滴流、汇集和倾倒。在这里,我们提出并测试了一种关于人类如何感知和预测这些液体动力学的计算模型,该模型基于将流体作为相互作用粒子的集合进行的粗略近似模拟。我们的模型类似于“头脑中的游戏引擎”,借鉴了用于交互模拟(如视频游戏)的技术,这些技术针对效率和自然外观进行了优化,而不是针对物理准确性。在两项行为实验中,我们发现该模型准确地捕捉到了人们对液体在复杂固体障碍物之间流动的预测,并且明显优于基于简单启发式和深度神经网络的几种替代方案。我们的模型还能够解释人们的预测如何随液体特性(例如粘性和粘性)而变化。总的来说,该模型和实证结果扩展了最近的一项提议,即人类对刚性固体物体动态的物理场景理解可以通过近似概率模拟来支持,扩展到更复杂和未被探索的流体动力学领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaed/6675131/3a38fb23596e/pcbi.1007210.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验