Suppr超能文献

平凡信息的坚实之美。

The robust beauty of ordinary information.

机构信息

Center for Adaptive Behavior and Cognition, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany.

出版信息

Psychol Rev. 2010 Oct;117(4):1259-66. doi: 10.1037/a0020418.

Abstract

Heuristics embodying limited information search and noncompensatory processing of information can yield robust performance relative to computationally more complex models. One criticism raised against heuristics is the argument that complexity is hidden in the calculation of the cue order used to make predictions. We discuss ways to order cues that do not entail individual learning. Then we propose and test the thesis that when orders are learned individually, people's necessarily limited knowledge will curtail computational complexity while also achieving robustness. Using computer simulations, we compare the performance of the take-the-best heuristic--with dichotomized or undichotomized cues--to benchmarks such as the naïve Bayes algorithm across 19 environments. Even with minute sizes of training sets, take-the-best using undichotomized cues excels. For 10 environments, we probe people's intuitions about the direction of the correlation between cues and criterion. On the basis of these intuitions, in most of the environments take-the-best achieves the level of performance that would be expected from learning cue orders from 50% of the objects in the environments. Thus, ordinary information about cues--either gleaned from small training sets or intuited--can support robust performance without requiring Herculean computations.

摘要

启发式方法体现了有限的信息搜索和非补偿性的信息处理,相对于计算上更复杂的模型,可以产生稳健的性能。对启发式方法的一个批评是,有人认为,在计算用于做出预测的线索顺序时,隐藏了复杂性。我们讨论了不涉及单个学习的线索排序方法。然后,我们提出并检验了这样一个假设,即当订单是单独学习时,人们有限的知识将限制计算的复杂性,同时也实现稳健性。我们使用计算机模拟,将最佳选择启发式(具有二分或非二分线索)与天真贝叶斯算法等基准在 19 个环境中进行比较。即使训练集很小,使用非二分线索的最佳选择也表现出色。对于 10 个环境,我们探测了人们对线索和标准之间相关性方向的直觉。基于这些直觉,在大多数环境中,最佳选择达到了从环境中 50%的对象学习线索顺序所预期的性能水平。因此,关于线索的普通信息——无论是从小的训练集中学到的还是凭直觉获得的——都可以支持稳健的性能,而不需要巨大的计算能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验