Manchester Academic Health Science Centre, The University of Manchester, Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, UK.
Manchester Academic Health Science Centre, NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK.
Rheumatology (Oxford). 2020 Jan 1;59(1):31-38. doi: 10.1093/rheumatology/kez113.
Adding biomarker information to real world datasets (e.g. biomarker data collected into disease/drug registries) can enhance mechanistic understanding of intra-patient differences in disease trajectories and differences in important clinical outcomes. Biomarkers can detect pathologies present early in disease potentially paving the way for preventative intervention strategies, which may help patients to avoid disability, poor treatment outcome, disease sequelae and premature mortality. However, adding biomarker data to real world datasets comes with a number of important challenges including sample collection and storage, study design and data analysis and interpretation. In this narrative review we will consider the benefits and challenges of adding biomarker data to real world datasets and discuss how biomarker data have added to our understanding of complex diseases, focusing on rheumatoid arthritis.
将生物标志物信息添加到真实世界的数据集(例如,收集到疾病/药物登记处的生物标志物数据)可以增强对患者内在疾病轨迹差异和重要临床结局差异的机制理解。生物标志物可以早期检测到疾病中的病理变化,从而为预防干预策略铺平道路,这可能有助于患者避免残疾、治疗效果不佳、疾病后遗症和过早死亡。然而,将生物标志物数据添加到真实世界的数据集存在许多重要挑战,包括样本采集和存储、研究设计以及数据分析和解释。在这篇叙述性综述中,我们将考虑将生物标志物数据添加到真实世界的数据集的益处和挑战,并讨论生物标志物数据如何帮助我们更好地理解复杂疾病,重点关注类风湿关节炎。