Suppr超能文献

通过 EEG 揭示从语音感知到语义处理的动态大脑连通性。

Revealing the Dynamic Brain Connectivity from Perception of Speech Sound to Semantic Processing by EEG.

机构信息

College of Intelligence and Computing, Tianjin Key lab of Cognitive Computing and Application, Tianjin University, Tianjin, China.

College of Intelligence and Computing, Tianjin Key lab of Cognitive Computing and Application, Tianjin University, Tianjin, China.

出版信息

Neuroscience. 2019 Sep 1;415:70-76. doi: 10.1016/j.neuroscience.2019.07.023. Epub 2019 Jul 19.

Abstract

Understanding brain processing mechanisms from the perception of speech sounds to high-level semantic processing is vital for effective human-robot communication. In this study, 128-channel electroencephalograph (EEG) signals were recorded when subjects were listening to real and pseudowords in Mandarin. By using an EEG source reconstruction method and a sliding-window Granger causality analysis, we analyzed the dynamic brain connectivity patterns. Results showed that the bilateral temporal cortex (lTC and rTC), the bilateral motor cortex (lMC and rMC), the frontal cortex (FC), and the occipital cortex (OC) were recruited in the process, with complex patterns in the real word condition than in the pseudoword condition. The spatial pattern is basically consistent with previous functional MRI studies on the understanding of spoken Chinese. For the real word condition, speech perception and processing involved different connection patterns in the initial phoneme perception and processing phase, the phonological processing and lexical selection phase, and the semantic integration phase. Specifically, compared with pseudowords, a hub region in the FC and unique patterns of lMC → rMC and lTC → FC connectivity were found during processing real words after 180 ms, while a distributed network of temporal, motor, and frontal brain areas was involved after 300 ms. This may be related to semantic processing and integration. The involvement of both bottom-up input and top-down modulation in real word processing may support the previously proposed TRACE model. In sum, the findings of this study suggest that representations of speech involve dynamic interactions among distributed brain regions that communicate through time-specific functional networks.

摘要

从语音感知到高级语义处理理解大脑处理机制对于有效的人机通信至关重要。在这项研究中,当被试者听普通话中的真实词和伪词时,记录了 128 通道脑电图(EEG)信号。通过使用 EEG 源重建方法和滑动窗口格兰杰因果分析,我们分析了动态脑连接模式。结果表明,双侧颞叶皮层(lTC 和 rTC)、双侧运动皮层(lMC 和 rMC)、额叶皮层(FC)和枕叶皮层(OC)被招募到这个过程中,真实词条件下的模式比伪词条件下更复杂。空间模式与之前关于理解汉语口语的功能磁共振成像研究基本一致。对于真实词条件,语音感知和处理在初始音素感知和处理阶段、语音处理和词汇选择阶段以及语义整合阶段涉及不同的连接模式。具体来说,与伪词相比,在处理真实词时,180 毫秒后 FC 中的一个枢纽区域和 lMC-rMC 和 lTC-FC 连接的独特模式,以及 300 毫秒后颞叶、运动和额叶大脑区域的分布式网络,都存在着连接。这可能与语义处理和整合有关。真实词处理中涉及自上而下的调制和自下而上的输入,这可能支持先前提出的TRACE 模型。总之,这项研究的结果表明,语音的表示涉及到分布在不同大脑区域之间的动态相互作用,这些区域通过特定时间的功能网络进行交流。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验