Suppr超能文献

利用经验动态建模分析和预测水库中 2-甲基异莰醇的产生。

Causality analysis and prediction of 2-methylisoborneol production in a reservoir using empirical dynamic modeling.

机构信息

Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan.

Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan; Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, Egypt.

出版信息

Water Res. 2019 Oct 15;163:114864. doi: 10.1016/j.watres.2019.114864. Epub 2019 Jul 16.

Abstract

2-Methylisobornel (MIB) is one of the most widespread and problematic biogenic compounds causing taste-and-odor problems in freshwater. To investigate the causes of MIB production and develop models to predict the MIB concentration, we have applied empirical dynamic modeling (EDM), a nonlinear approach based on Chaos theory, to the long-term water quality dataset of Kamafusa Reservoir in Japan. The study revealed the dynamic nature of MIB production in the reservoir, and determined causal variables for MIB production, including water temperature, pH, transparency, light intensity, and Green Phormidium. Moreover, EDM established that the system is three-dimensional, and the approach found elevated nonlinearity (from 1.5 to 3) across the whole study period (1996-2015). By taking only one or two candidate predictors with varying time lags, multivariate models for predicting MIB production (best model: r = 0.83, p < 0.001, root mean squared error = 3.1 ng/L) were successfully established. The modeling approach used in this study is a powerful tool for causality identification and odor prediction, thus making important contributions to reservoir management.

摘要

2-甲基异莰醇(MIB)是一种在淡水中普遍存在且极具问题的生源化合物,会导致异味问题。为了研究 MIB 产生的原因并开发预测 MIB 浓度的模型,我们将经验动态建模(EDM)应用于日本蒲郡水库的长期水质数据集,这是一种基于混沌理论的非线性方法。该研究揭示了水库中 MIB 产生的动态特性,并确定了 MIB 产生的因果变量,包括水温、pH 值、透明度、光照强度和绿微囊藻。此外,EDM 确定该系统为三维系统,并且整个研究期间(1996-2015 年)的方法都发现了非线性的升高(从 1.5 到 3)。通过仅采用具有不同时滞的一个或两个候选预测因子,成功建立了用于预测 MIB 产生的多元模型(最佳模型:r=0.83,p<0.001,均方根误差=3.1ng/L)。本研究中使用的建模方法是一种用于识别因果关系和预测异味的强大工具,因此为水库管理做出了重要贡献。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验