Molecular and Cellular Biology PhD program, University of Washington, Seattle, United States.
Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States.
Elife. 2022 Aug 19;11:e72518. doi: 10.7554/eLife.72518.
Complex systems are challenging to understand, especially when they defy manipulative experiments for practical or ethical reasons. Several fields have developed parallel approaches to infer causal relations from observational time series. Yet, these methods are easy to misunderstand and often controversial. Here, we provide an accessible and critical review of three statistical causal discovery approaches (pairwise correlation, Granger causality, and state space reconstruction), using examples inspired by ecological processes. For each approach, we ask what it tests for, what causal statement it might imply, and when it could lead us astray. We devise new ways of visualizing key concepts, describe some novel pathologies of existing methods, and point out how so-called 'model-free' causality tests are not assumption-free. We hope that our synthesis will facilitate thoughtful application of methods, promote communication across different fields, and encourage explicit statements of assumptions. A video walkthrough is available (Video 1 or https://youtu.be/AIV0ttQrjK8).
复杂系统难以理解,尤其是当出于实际或伦理原因而无法进行操纵性实验时。有几个领域已经开发出了从观测时间序列中推断因果关系的并行方法。然而,这些方法很容易被误解,而且常常存在争议。在这里,我们使用受生态过程启发的示例,对三种统计因果发现方法(成对相关、格兰杰因果关系和状态空间重构)进行了易于理解和批判性的回顾。对于每种方法,我们都会询问它测试的是什么,它可能暗示的因果陈述是什么,以及何时可能导致我们产生误解。我们设计了新的可视化关键概念的方法,描述了现有方法的一些新的病理,并指出了所谓的“无模型”因果检验并非无假设。我们希望我们的综合能促进方法的深思熟虑的应用,促进不同领域之间的交流,并鼓励明确陈述假设。视频讲解(视频 1 或 https://youtu.be/AIV0ttQrjK8)可用。
J Neurosci Methods. 2013-11-5
Ying Yong Sheng Tai Xue Bao. 2021-12
Philos Trans R Soc Lond B Biol Sci. 2024-9-9
J Neurosci Methods. 2017-1-1
Lifetime Data Anal. 2010-1
Front Netw Physiol. 2022-5-3
J Transl Med. 2025-7-24
Front Big Data. 2025-3-14
Nat Commun. 2020-5-26
Front Genet. 2020-4-21
FEMS Microbiol Ecol. 2020-6-1
ISME J. 2019-6-28