Suppr超能文献

是什么使挥发性有机化合物成为昆虫食草性的可靠指标?

What makes a volatile organic compound a reliable indicator of insect herbivory?

机构信息

Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, 6708PB, Wageningen, The Netherlands.

Laboratory of Entomology, Department of Plant Sciences, Wageningen University, 6708PB, Wageningen, The Netherlands.

出版信息

Plant Cell Environ. 2019 Dec;42(12):3308-3325. doi: 10.1111/pce.13624. Epub 2019 Aug 18.

Abstract

Plants that are subject to insect herbivory emit a blend of so-called herbivore-induced plant volatiles (HIPVs), of which only a few serve as cues for the carnivorous enemies to locate their host. We lack understanding which HIPVs are reliable indicators of insect herbivory. Here, we take a modelling approach to elucidate which physicochemical and physiological properties contribute to the information value of a HIPV. A leaf-level HIPV synthesis and emission model is developed and parameterized to poplar. Next, HIPV concentrations within the canopy are inferred as a function of dispersion, transport and chemical degradation of the compounds. We show that the ability of HIPVs to reveal herbivory varies from almost perfect to no better than chance and interacts with canopy conditions. Model predictions matched well with leaf-emission measurements and field and laboratory assays. The chemical class a compound belongs to predicted the signalling ability of a compound only to a minor extent, whereas compound characteristics such as its reaction rate with atmospheric oxidants, biosynthesis rate upon herbivory and volatility were much more important predictors. This study shows the power of merging fields of plant-insect interactions and atmospheric chemistry research to increase our understanding of the ecological significance of HIPVs.

摘要

受昆虫取食的植物会释放出混合的所谓的植食性诱导挥发物(HIPVs),其中只有少数几种可作为肉食性天敌定位其宿主的线索。我们不了解哪些 HIPVs 是昆虫取食的可靠指标。在这里,我们采用建模的方法来阐明哪些物理化学和生理特性有助于 HIPV 的信息价值。我们开发并参数化了一个基于叶片水平的 HIPV 合成和排放模型。接下来,我们根据化合物的扩散、传输和化学降解来推断树冠内的 HIPV 浓度。我们表明,HIPVs 揭示取食的能力从几乎完美到不比机会更好,并且与树冠条件相互作用。模型预测与叶片排放测量以及田间和实验室测定非常吻合。化合物所属的化学类别仅在较小程度上预测了化合物的信号传递能力,而化合物的特征,如与大气氧化剂的反应速率、取食时的生物合成速率和挥发性,是更重要的预测因子。这项研究表明,将植物-昆虫相互作用和大气化学研究领域结合起来,可以增强我们对 HIPVs 生态意义的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9a7/6972585/ddb94ce2d69b/PCE-42-3308-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验