Speck Thomas
Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany.
Phys Rev E. 2019 Jun;99(6-1):060602. doi: 10.1103/PhysRevE.99.060602.
Most available theoretical predictions for the self-diffusiophoretic motion of colloidal particles are based on the hydrodynamic thin boundary layer approximation in combination with a solvent body force due to a self-generated local solute gradient. This gradient is enforced through specifying boundary conditions, typically without accounting for the thermodynamic cost to maintain the gradient. Here, we present an alternative thermodynamic approach that exploits a direct link between dynamics and entropy production: the local detailed balance condition. We study two cases: First, we revisit self-propulsion in a demixing binary solvent. At variance with a slip velocity, we find that propulsion is due to forces at the poles that are perpendicular to the particle surface. Second, for catalytic swimmers driven through liberating chemical free energy we recover previous expressions. In both cases we argue that propulsion is due to asymmetric dissipation and not simply due to an asymmetric concentration of molecular solutes.
对于胶体颗粒的自扩散电泳运动,大多数现有的理论预测都是基于流体动力学薄边界层近似,并结合由于自生局部溶质梯度产生的溶剂体力。这种梯度是通过指定边界条件来强制实现的,通常没有考虑维持该梯度的热力学成本。在此,我们提出一种替代的热力学方法,该方法利用动力学与熵产生之间的直接联系:局部细致平衡条件。我们研究了两种情况:第一,我们重新审视在二元混合溶剂中的自推进。与滑移速度不同,我们发现推进是由于垂直于颗粒表面的极点处的力。第二,对于通过释放化学自由能驱动的催化游动体,我们得到了先前的表达式。在这两种情况下,我们认为推进是由于不对称耗散,而不仅仅是由于分子溶质的不对称浓度。