Bayati Parvin, Mallory Stewart A
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
ACS Nano. 2024 Aug 27;18(34):23047-23057. doi: 10.1021/acsnano.4c05076. Epub 2024 Aug 13.
A long-standing goal in colloidal active matter is to understand how gradients in fuel concentration influence the motion of phoretic Janus particles. Here, we present a theoretical description of the motion of a spherical phoretic Janus particle in the presence of a radial gradient of the chemical solute driving self-propulsion. Radial gradients are a geometry relevant to many scenarios in active matter systems and naturally arise due to the presence of a point source or sink of fuel. We derive an analytical solution for the Janus particle's velocity and quantify the influence of the radial concentration gradient on the particle's trajectory. Compared to a phoretic Janus particle in a linear gradient in fuel concentration, we uncover a much richer set of dynamic behaviors including circular orbits and trapped stationary states. We identify the ratio of the phoretic mobilities between the two domains of the Janus particle as a central quantity in tuning their dynamics. Our results provide a path for developing optimum protocols for tuning the dynamics of phoretic Janus particles and mixing fluid at the microscale. In addition, this work suggests a method for quantifying the surface properties of phoretic Janus particles, which have proven to be challenging to probe experimentally.
胶体活性物质领域的一个长期目标是了解燃料浓度梯度如何影响泳动型雅努斯粒子的运动。在此,我们给出了一个球形泳动型雅努斯粒子在驱动自推进的化学溶质径向梯度存在下运动的理论描述。径向梯度是一种与活性物质系统中的许多情形相关的几何结构,并且由于燃料的点源或汇的存在而自然产生。我们推导出了雅努斯粒子速度的解析解,并量化了径向浓度梯度对粒子轨迹的影响。与处于燃料浓度线性梯度中的泳动型雅努斯粒子相比,我们发现了一系列更为丰富的动力学行为,包括圆形轨道和捕获的静止状态。我们确定雅努斯粒子两个区域之间的泳动迁移率之比是调节其动力学的核心量。我们的结果为开发用于调节泳动型雅努斯粒子动力学和在微尺度上混合流体的最佳方案提供了一条途径。此外,这项工作提出了一种量化泳动型雅努斯粒子表面性质的方法,事实证明这种粒子的表面性质在实验上难以探测。