Suppr超能文献

In vitro polymorphism and phase transitions of the neurofilamentous network isolated from the giant axon of the squid (Loligo pealei L.).

作者信息

Metuzals J, Pant H, Gainer H, Eagles P A, White N S, Houghton S

机构信息

Department of Pathology, Faculty of Health Sciences, University of Ottawa, Canada.

出版信息

Cell Tissue Res. 1988 May;252(2):249-62. doi: 10.1007/BF00214367.

Abstract

Using electron microscopy (EM), optical diffraction and image reconstruction techniques, we have demonstrated polymorphism of neurofilamentous network (NFN) in vitro based on phase transitions of the protein assemblies. The specific polymorphic appearances depended upon a number of factors, such as K+, Mg2+, Ca2+ ions, as well as the charge and hydration state of the molecules. Furthermore, modifications initiated by the state of phosphorylation of the sidearm proteins played an important role, especially in determining the sidearm disposition of the NFN. The Ca2+-activated protease removed the sidearms. Other enzymes activated by Ca2+ may initiate new association patterns of the peptide remnants and the intercoiling of two smooth neurofilaments (NFs) into paired helical filament-like (PHF-like) strands. Prolonged storage of the isolated NFs in Rubinson-Baker solution resulted in autocrosslinking and intercoiling of modified NFN components. The in vitro polymorphism and phase transitions of squid NFN induced under controlled conditions have been compared to modifications of cytoskeleton observed by EM in frontal lobe biopsies of Alzheimer patients. We conclude that similar processes, as induced in vitro, do occur in neurons of Alzheimer patients.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验