Research Division, Weill Cornell Medicine Qatar, Weill Cornell University, P.O. Box 24144, Doha, Qatar.
Research Division, Weill Cornell Medicine Qatar, Weill Cornell University, P.O. Box 24144, Doha, Qatar.
Mol Cell Proteomics. 2019 Oct;18(10):1950-1966. doi: 10.1074/mcp.RA119.001356. Epub 2019 Jul 22.
Mesenchymal stem/stromal cells (MSCs) are self-renewing multipotent cells with regenerative, secretory and immunomodulatory capabilities that are beneficial for the treatment of various diseases. To avoid the issues that come with using tissue-derived MSCs in therapy, MSCs may be generated by the differentiation of human embryonic stems cells (hESCs) in culture. However, the changes that occur during the differentiation process have not been comprehensively characterized. Here, we combined transcriptome, proteome and phosphoproteome profiling to perform an in-depth, multi-omics study of the hESCs-to-MSCs differentiation process. Based on RNA-to-protein correlation, we determined a set of high confidence genes that are important to differentiation. Among the earliest and strongest induced proteins with extensive differential phosphorylation was AHNAK, which we hypothesized to be a defining factor in MSC biology. We observed two distinct expression waves of developmental HOX genes and an AGO2-to-AGO3 switch in gene silencing. Exploring the kinetic of noncoding ORFs during differentiation, we mapped new functions to well annotated long noncoding RNAs (CARMN, MALAT, NEAT1, LINC00152) as well as new candidates which we identified to be important to the differentiation process. Phosphoproteome analysis revealed ESC and MSC-specific phosphorylation motifs with PAK2 and RAF1 as top predicted upstream kinases in MSCs. Our data represent a rich systems-level resource on ESC-to-MSC differentiation that will be useful for the study of stem cell biology.
间充质干细胞(MSCs)是具有自我更新和多能性的细胞,具有再生、分泌和免疫调节功能,有利于治疗各种疾病。为了避免使用组织来源的 MSCs 在治疗中出现的问题,MSCs 可以通过在培养物中分化人类胚胎干细胞(hESCs)来产生。然而,在分化过程中发生的变化尚未得到全面描述。在这里,我们结合转录组、蛋白质组和磷酸化蛋白质组谱分析,对 hESCs 向 MSCs 分化过程进行了深入的多组学研究。基于 RNA 与蛋白质的相关性,我们确定了一组对分化很重要的高可信度基因。在最早和最强诱导的具有广泛差异磷酸化的蛋白质中,AHNAK 是一个重要的蛋白,我们假设它是 MSC 生物学的一个决定性因素。我们观察到发育性 HOX 基因的两个不同表达波和基因沉默中的 AGO2-AGO3 转换。在探索分化过程中非编码 ORFs 的动力学时,我们将新的功能映射到了经过充分注释的长非编码 RNA(CARMN、MALAT、NEAT1、LINC00152)上,并确定了新的候选基因,这些基因对分化过程很重要。磷酸化蛋白质组分析揭示了 ESC 和 MSC 特异性磷酸化基序,其中 PAK2 和 RAF1 是 MSC 中预测的上游激酶的前两位。我们的数据代表了 ESC 向 MSC 分化的丰富的系统水平资源,将有助于干细胞生物学的研究。