Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
Nat Biotechnol. 2019 Sep;37(9):1070-1079. doi: 10.1038/s41587-019-0193-0. Epub 2019 Jul 22.
Base editors use DNA-modifying enzymes targeted with a catalytically impaired CRISPR protein to precisely install point mutations. Here, we develop phage-assisted continuous evolution of base editors (BE-PACE) to improve their editing efficiency and target sequence compatibility. We used BE-PACE to evolve cytosine base editors (CBEs) that overcome target sequence context constraints of canonical CBEs. One evolved CBE, evoAPOBEC1-BE4max, is up to 26-fold more efficient at editing cytosine in the GC context, a disfavored context for wild-type APOBEC1 deaminase, while maintaining efficient editing in all other sequence contexts tested. Another evolved deaminase, evoFERNY, is 29% smaller than APOBEC1 and edits efficiently in all tested sequence contexts. We also evolved a CBE based on CDA1 deaminase with much higher editing efficiency at difficult target sites. Finally, we used data from evolved CBEs to illuminate the relationship between deaminase activity, base editing efficiency, editing window width and byproduct formation. These findings establish a system for rapid evolution of base editors and inform their use and improvement.
碱基编辑器利用与催化失活的 CRISPR 蛋白靶向结合的 DNA 修饰酶,精确地引入点突变。在这里,我们开发了噬菌体辅助的碱基编辑器连续进化(BE-PACE)系统,以提高它们的编辑效率和目标序列兼容性。我们使用 BE-PACE 来进化胞嘧啶碱基编辑器(CBEs),以克服经典 CBEs 的目标序列上下文限制。一个进化的 CBE,evoAPOBEC1-BE4max,在 GC 背景下编辑胞嘧啶的效率提高了 26 倍,这是野生型 APOBEC1 脱氨酶不喜欢的背景,同时在所有其他测试的序列背景下保持高效编辑。另一个进化的脱氨酶 evoFERNY 比 APOBEC1 小 29%,并在所有测试的序列背景下有效编辑。我们还进化了一种基于 CDA1 脱氨酶的 CBE,在困难的靶位点具有更高的编辑效率。最后,我们使用进化后的 CBE 的数据来阐明脱氨酶活性、碱基编辑效率、编辑窗口宽度和副产物形成之间的关系。这些发现建立了一个快速进化碱基编辑器的系统,并为它们的使用和改进提供了信息。