Mei Jialun, Ding Peng, Gao Chuan, Zhou Jian, Li Zhiwei, Zhang Changqing, Gao Junjie
Department of Orthopaedics Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China.
Institute of Microsurgery on Extremities and Department of Orthopedic Surgery Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China.
MedComm (2020). 2025 Sep 12;6(9):e70385. doi: 10.1002/mco2.70385. eCollection 2025 Sep.
Mitochondrial diseases are a heterogeneous group of inherited disorders caused by pathogenic variants in mitochondrial DNA (mtDNA) or nuclear genes encoding mitochondrial proteins, culminating in defective oxidative phosphorylation and multisystem involvement. Key pathogenic mechanisms include heteroplasmy driven threshold effects, excess reactive oxygen species, disrupted mitochondrial dynamics and mitophagy, abnormal calcium signaling, and compromised mtDNA repair, which together cause tissue-specific energy failure in high demand organs. Recent advances have expanded the therapeutic landscape. Precision mitochondrial genome editing-using mitochondrial zinc finger nucleases, mitochondrial transcription activator-like effector nucleases, DddA-derived cytosine base editor, and other base editing tools-enables targeted correction or rebalancing of mutant genomes, while highlighting challenges of delivery and off-target effects. In parallel, metabolic modulators (e.g., coenzyme Q10, idebenone, EPI-743) aim to restore bioenergetics, and mitochondrial replacement technologies and transplantation are being explored. Despite these promising strategies, major challenges remain, including off-target effects, precise delivery, and ethical considerations. Addressing these issues through multidisciplinary research and clinical translation holds promise for transforming mitochondrial disease management and improving patient outcomes. By bridging the understanding of mitochondrial dysfunction with advanced therapeutic interventions, this review aims to shed light on effective solutions for managing these complex disorders.
线粒体疾病是一组由线粒体DNA(mtDNA)或编码线粒体蛋白的核基因中的致病变异引起的遗传性疾病,最终导致氧化磷酸化缺陷和多系统受累。关键的致病机制包括异质性驱动的阈值效应、过量的活性氧、线粒体动力学和线粒体自噬破坏、异常的钙信号传导以及mtDNA修复受损,这些共同导致高需求器官出现组织特异性能量衰竭。最近的进展扩大了治疗前景。精确的线粒体基因组编辑——使用线粒体锌指核酸酶、线粒体转录激活样效应核酸酶、DddA衍生的胞嘧啶碱基编辑器和其他碱基编辑工具——能够对突变基因组进行靶向校正或重新平衡,同时凸显了递送和脱靶效应方面的挑战。与此同时,代谢调节剂(如辅酶Q10、艾地苯醌、EPI - 743)旨在恢复生物能量学,并且正在探索线粒体替代技术和移植。尽管有这些有前景的策略,但主要挑战仍然存在,包括脱靶效应、精确递送和伦理考量。通过多学科研究和临床转化来解决这些问题,有望改变线粒体疾病的管理并改善患者预后。通过将对线粒体功能障碍的理解与先进的治疗干预措施相结合,本综述旨在阐明管理这些复杂疾病的有效解决方案。