Suppr超能文献

基于深度递归神经网络的冗余机械手避障控制

Deep Recurrent Neural Networks Based Obstacle Avoidance Control for Redundant Manipulators.

作者信息

Xu Zhihao, Zhou Xuefeng, Li Shuai

机构信息

Guangdong Key Laboratory of Modern Control Technology, Guangdong Institute of Intelligence Manufacturing, Guangzhou, China.

School of Engineering, Swansea University, Swansea, United Kingdom.

出版信息

Front Neurorobot. 2019 Jul 4;13:47. doi: 10.3389/fnbot.2019.00047. eCollection 2019.

Abstract

Obstacle avoidance is an important subject in the control of robot manipulators, but is remains challenging for robots with redundant degrees of freedom, especially when there exist complex physical constraints. In this paper, we propose a novel controller based on deep recurrent neural networks. By abstracting robots and obstacles into critical point sets respectively, the distance between the robot and obstacles can be described in a simpler way, then the obstacle avoidance strategy is established in form of inequality constraints by general class-K functions. Using minimal-velocity-norm (MVN) scheme, the control problem is formulated as a quadratic-programming case under multiple constraints. Then a deep recurrent neural network considering system models is established to solve the QP problem online. Theoretical conduction and numerical simulations show that the controller is capable of avoiding static or dynamic obstacles, while tracking the predefined trajectories under physical constraints.

摘要

避障是机器人操纵器控制中的一个重要课题,但对于具有冗余自由度的机器人来说,仍然具有挑战性,特别是当存在复杂的物理约束时。在本文中,我们提出了一种基于深度递归神经网络的新型控制器。通过将机器人和障碍物分别抽象为临界点集,可以更简单地描述机器人与障碍物之间的距离,然后通过一般类K函数以不等式约束的形式建立避障策略。使用最小速度范数(MVN)方案,将控制问题表述为多约束下的二次规划问题。然后建立一个考虑系统模型的深度递归神经网络来在线求解QP问题。理论推导和数值模拟表明,该控制器能够在物理约束下跟踪预定义轨迹的同时避开静态或动态障碍物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1953/6622359/156dec97c376/fnbot-13-00047-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验