LAAS-CNRS, Université de Toulouse, CNRS , F-31400 Toulouse , France.
Institut National des Sciences Appliquées-INSA , F-31400 Toulouse , France.
ACS Appl Mater Interfaces. 2019 Aug 14;11(32):28631-28640. doi: 10.1021/acsami.9b07564. Epub 2019 Aug 2.
The development of advanced techniques of fabrication of three-dimensional (3D) microenvironments for the study of cell growth and proliferation has become one of the major motivations of material scientists and bioengineers in the past decade. Here, we present a novel residueless 3D structuration technique of poly(dimethylsiloxane) (PDMS) by water-in-PDMS emulsion casting and subsequent curing process in temperature-/pressure-controlled environment. Scanning electron microscopy and X-ray microcomputed tomography allowed us to investigate the impact of those parameters on the microarchitecture of the porous structure. We demonstrated that the optimized emulsion casting process gives rise to large-scale and highly interconnected network with pore size ranging from 500 μm to 1.5 mm that turned out to be nicely adapted to 3D cell culture. Experimental cell culture validations were performed using SaOS-2 (osteosarcoma) cell lines. Epifluorescence and deep penetration imaging techniques as two-photon confocal microscopy unveiled information about cell morphology and confirmed a homogeneous cell proliferation and spatial distribution in the 3D porous structure within an available volume larger than 1 cm. These results open alternative scenarios for the fabrication and integration of porous scaffolds for the development of 3D cell culture platforms.
在过去的十年中,为了研究细胞生长和增殖而开发用于制造三维(3D)微环境的先进技术已经成为材料科学家和生物工程师的主要动机之一。在这里,我们提出了一种新颖的无残留聚二甲基硅氧烷(PDMS)3D 结构技术,该技术通过 PDMS 乳液铸造和随后在温度/压力控制环境下的固化过程来实现。扫描电子显微镜和 X 射线微计算机断层扫描使我们能够研究这些参数对多孔结构微结构的影响。我们证明,优化的乳液铸造工艺会产生具有大尺寸和高度互连网络的多孔结构,其孔径范围从 500μm 到 1.5mm,非常适合 3D 细胞培养。使用 SaOS-2(骨肉瘤)细胞系进行了实验细胞培养验证。荧光显微镜和深穿透成像技术(如双光子共聚焦显微镜)揭示了有关细胞形态的信息,并证实了在可用体积大于 1cm 的 3D 多孔结构中细胞的均匀增殖和空间分布。这些结果为多孔支架的制造和集成开辟了替代方案,以开发 3D 细胞培养平台。