Department of Chemistry , University of Pennsylvania , 231 S. 34 Street , Philadelphia , Pennsylvania 19104 , United States.
Department of Chemistry , Drexel University , 32 S. 32nd Street , Philadelphia , Pennsylvania 19104 , United States.
J Phys Chem B. 2019 Aug 15;123(32):6933-6945. doi: 10.1021/acs.jpcb.9b04113. Epub 2019 Aug 2.
Alkyl imidazolium chloride ionic liquids (ILs) have been used for numerous biochemical applications. Their hydrophobicity can be tuned by changing the alkyl chain length, and longer-chain ILs can form micelles in aqueous solution. We have investigated the effects of imidazolium chloride ILs on the structure and stability of azurin, which is a very stable Cu redox protein with both α-helix and β-sheet domains. Temperature-dependent infrared (IR) and vibrational circular dichroism spectroscopy can provide secondary-structure-specific information about how the protein is affected, and temperature-jump transient IR measurements can quantify the IL-influenced unfolding dynamics. Using these techniques, we can quantify how azurin is destabilized by 1.0 M ILs in aqueous solution. The shorter, less hydrophobic ILs, 1-butyl-3-methylimidazolium chloride and 1-hexyl-3-methylimidazolium chloride likely interact with the α-helix domain and decrease protein melting temperature from 82 °C without IL to 55 °C and disturb the overall tertiary structure, resulting in a looser, more open shape. Thermodynamic analysis indicates that protein destabilization is due to increased unfolding entropy. 1-Octyl-3-methylimidazolium chloride [OMIM]Cl, which forms micelles in solution that may partially solvate the protein, has a more significant destabilizing effect, resulting in a melting temperature of 35 °C, larger unfolding entropy, and relaxation kinetics several orders of magnitude faster than with unperturbed azurin. The temperature-independence of the relaxation time constant suggests that in the presence of [OMIM]Cl, the protein folding potential energy surface has become very smooth.
烷基咪唑氯化物离子液体(ILs)已被广泛应用于众多生化领域。通过改变烷基链长度可以调节其疏水性,长链 IL 可以在水溶液中形成胶束。我们研究了咪唑氯化物 ILs 对天青蛋白结构和稳定性的影响,天青蛋白是一种具有α-螺旋和β-折叠结构域的非常稳定的 Cu 氧化还原蛋白。温度依赖的红外(IR)和振动圆二色性光谱可以提供有关蛋白质受影响的二级结构特异性信息,而温度跃变瞬态红外测量可以量化 IL 影响的去折叠动力学。使用这些技术,我们可以量化 1.0 M ILs 在水溶液中使天青蛋白失稳的程度。较短、疏水性较弱的 IL,1-丁基-3-甲基咪唑氯化物和 1-己基-3-甲基咪唑氯化物可能与α-螺旋结构域相互作用,使蛋白无 IL 时的熔点从 82°C 降低至 55°C,并破坏整体三级结构,导致形状更松散、更开放。热力学分析表明,蛋白失稳是由于去折叠熵增加所致。在溶液中形成胶束的 1-辛基-3-甲基咪唑氯化物[OMIM]Cl 具有更显著的去稳定作用,导致熔点为 35°C,去折叠熵更大,弛豫动力学比未受干扰的天青蛋白快几个数量级。弛豫时间常数的温度无关性表明,在[OMIM]Cl 存在下,蛋白折叠的势能表面变得非常平滑。