Suppr超能文献

基于实时连续血糖监测的算法以触发低血糖处理,预防/减轻低血糖事件。

A Real-Time Continuous Glucose Monitoring-Based Algorithm to Trigger Hypotreatments to Prevent/Mitigate Hypoglycemic Events.

机构信息

Department of Information Engineering, University of Padova, Padova, Italy.

出版信息

Diabetes Technol Ther. 2019 Nov;21(11):644-655. doi: 10.1089/dia.2019.0139. Epub 2019 Jul 25.

Abstract

The standard treatment for hypoglycemia recommended by the American Diabetes Association (ADA) suggests patients with diabetes to take small amounts of carbohydrates, the so-called hypotreatments (HTs), as soon as blood glucose concentration goes below 70 mg/dL. However, prevention, or at least mitigation, of hypoglycemic events could be achieved by triggering HTs ahead of time thanks to the use of the predictive capabilities of suitable real-time algorithms fed by continuous glucose monitoring (CGM) sensor data. The algorithm proposed in this article to trigger HTs for preventing forthcoming hypoglycemic events is based on the computation of the "dynamic risk", there is a nonlinear function combining current glycemia with its rate-of-change, both provided by CGM. A comparison of performance of the proposed algorithm against the ADA guidelines is made, in silico on datasets of 100 virtual patients undergoing a single-meal experiment, with induced postmeal hypoglycemia, generated by the UVA/Padova type 1 diabetes simulator. On noise-free CGM data, the proposed algorithm reduces the time spent in hypoglycemia, on median [25th-75th percentiles] from 36 [29-43] to 0 [0-11] min ( < 0.0001), with a concomitant decrease of the post-treatment rebound (PTR) in glucose concentration, on median [25th-75th percentiles] from 136 [121-148] to 121 [116-127] mg/dL ( < 0.0001). On noisy CGM data, there is still a reduction of both time spent in hypoglycemia from 41 [28-49] min to 25 [0-41] min ( < 0.0001) and PTR from 174 [146-189] mg/dL to 137 [123-151] mg/dL ( < 0.0001). The potentiality of the new algorithm in generating preventive HTs, which can allow significant reduction of hypoglycemia without concomitant increase of hyperglycemia, suggests its further development and test in silico, for example, simulating both insulin pump and multiple-daily-injection therapies.

摘要

美国糖尿病协会 (ADA) 推荐的低血糖标准治疗方法建议糖尿病患者一旦血糖浓度低于 70mg/dL,就立即服用少量碳水化合物,即所谓的低血糖治疗 (HT)。然而,通过使用连续血糖监测 (CGM) 传感器数据的合适实时算法的预测能力,可以提前触发 HT,从而预防或至少减轻低血糖事件。本文提出的用于预防即将发生的低血糖事件的触发 HT 的算法是基于计算“动态风险”,该算法是一个非线性函数,将当前血糖与 CGM 提供的血糖变化率相结合。在接受单餐实验的 100 个虚拟患者的数据集上,通过 UVA/Padova 1 型糖尿病模拟器诱导餐后低血糖,对所提出的算法与 ADA 指南的性能进行了比较,在没有噪声的 CGM 数据上,该算法将低血糖时间中位数 [25 至 75 百分位数] 从 36 [29 至 43] 分钟减少到 0 [0 至 11] 分钟( < 0.0001),同时葡萄糖浓度的治疗后反弹 (PTR) 也相应降低,中位数 [25 至 75 百分位数] 从 136 [121 至 148] 毫克/分升降低到 121 [116 至 127] 毫克/分升( < 0.0001)。在有噪声的 CGM 数据上,低血糖时间中位数 [25 至 75 百分位数] 仍从 41 [28 至 49] 分钟减少到 25 [0 至 41] 分钟( < 0.0001),PTR 从 174 [146 至 189] 毫克/分升减少到 137 [123 至 151] 毫克/分升( < 0.0001)。新算法在生成预防性 HT 方面的潜力,可以显著减少低血糖而不会同时增加高血糖,建议进一步开发并在模拟中进行测试,例如模拟胰岛素泵和多次每日注射疗法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验