Suppr超能文献

基于预测漏斗的葡萄糖特定模型识别与报警策略联合应用以改善低血糖事件的在线预测。

Combined Use of Glucose-Specific Model Identification and Alarm Strategy Based on Prediction-Funnel to Improve Online Forecasting of Hypoglycemic Events.

机构信息

Department of Information Engineering, University of Padova, Padova, Italy.

出版信息

J Diabetes Sci Technol. 2023 Sep;17(5):1295-1303. doi: 10.1177/19322968221093665. Epub 2022 May 24.

Abstract

BACKGROUND

Advanced decision support systems for type 1 diabetes (T1D) management often embed prediction modules, which allow T1D people to take preventive actions to avoid critical episodes like hypoglycemia. Real-time prediction of blood glucose (BG) concentration relies on a subject-specific model of glucose-insulin dynamics. Model parameter identification is usually based on the mean square error (MSE) cost function, and the model is usually used to predict BG at a single prediction horizon (PH). Finally, a hypo-alarm is raised if the predicted BG crosses a threshold. This work aims to show that real-time hypoglycemia forecasting can be improved by leveraging: a glucose-specific mean square error (gMSE) cost function in model's parameters identification, and a "prediction-funnel," that is, confidence intervals (CIs) for multiple PHs, within the hypo-alarm-raising strategy.

METHODS

Autoregressive integrated moving average with exogenous input (ARIMAX) models are selected to illustrate the proposed solution (use of gMSE and prediction-funnel) and its assessment against the conventional approach (MSE and single PH). The gMSE penalizes the model misfit in unsafe BG ranges (e.g., hypoglycemia), and the prediction-funnel allows raising an alarm by monitoring if the CIs cross a suitable threshold. The algorithms were evaluated by measuring precision (), recall (), 1-score (1), false positive per day (FP/day), and time gain (TG) on a real dataset collected in 11 T1D individuals.

RESULTS

The best performance is achieved exploiting both the gMSE and the prediction-funnel: = 65%, = 88%, 1 = 75%, FP/day = 0.29, and mean TG = 15 minutes.

CONCLUSIONS

The combined use of a glucose-specific metric and an alarm-raising strategy based on the prediction-funnel allows achieving a more effective and reliable hypoglycemia prediction algorithm.

摘要

背景

用于 1 型糖尿病(T1D)管理的高级决策支持系统通常嵌入预测模块,允许 T1D 患者采取预防措施避免低血糖等危急情况。血糖(BG)浓度的实时预测依赖于葡萄糖-胰岛素动力学的个体特定模型。模型参数识别通常基于均方误差(MSE)代价函数,并且该模型通常用于在单个预测时窗(PH)预测 BG。如果预测的 BG 超过阈值,则会发出低血糖警报。这项工作旨在表明,通过利用:模型参数识别中的葡萄糖特定均方误差(gMSE)代价函数和低血糖警报策略中的多个 PH 的置信区间(CI),即“预测漏斗”,可以改善实时低血糖预测。

方法

选择自回归综合移动平均模型与外生输入(ARIMAX)来举例说明所提出的解决方案(使用 gMSE 和预测漏斗)及其对传统方法(MSE 和单个 PH)的评估。gMSE 惩罚不安全 BG 范围内的模型失配(例如低血糖),预测漏斗通过监测 CI 是否超过合适的阈值来允许发出警报。通过在 11 名 T1D 个体中收集的真实数据集上测量精度()、召回率()、1 分(1)、每天的假阳性(FP/day)和时间增益(TG)来评估算法。

结果

利用 gMSE 和预测漏斗都可以达到最佳性能:=65%,=88%,1=75%,FP/day=0.29,平均 TG=15 分钟。

结论

使用葡萄糖特定指标和基于预测漏斗的警报策略的组合可以实现更有效和可靠的低血糖预测算法。

相似文献

10
A glucose-specific metric to assess predictors and identify models.用于评估预测因素和识别模型的葡萄糖特异性指标。
IEEE Trans Biomed Eng. 2012 May;59(5):1281-90. doi: 10.1109/TBME.2012.2185234. Epub 2012 Jan 23.

本文引用的文献

4
Feature-Based Machine Learning Model for Real-Time Hypoglycemia Prediction.基于特征的机器学习模型实时预测低血糖。
J Diabetes Sci Technol. 2021 Jul;15(4):842-855. doi: 10.1177/1932296820922622. Epub 2020 Jun 1.
7
Prediction of Adverse Glycemic Events From Continuous Glucose Monitoring Signal.基于连续血糖监测信号预测不良血糖事件。
IEEE J Biomed Health Inform. 2019 Mar;23(2):650-659. doi: 10.1109/JBHI.2018.2823763. Epub 2018 Apr 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验