Department of Physics, Cochin University of Science and Technology, Cochin 682022, India.
Nanotechnology. 2019 Oct 4;30(40):405705. doi: 10.1088/1361-6528/ab2d7f. Epub 2019 Jul 23.
Magnetic bistability between vortex and single domain states in nanostructures are of great interest from both fundamental and technological perspectives. In soft magnetic nanostructures, the transition from a uniform collinear magnetic state to a vortex state (or vice versa) induced by a magnetic field involves an energy barrier. If the thermal energy is large enough for overcoming this energy barrier, magnetic bistability with a hysteresis-free switching occurs between the two magnetic states. In this work, we tune this energy barrier by tailoring the composition of FePd alloys, which were deposited onto self-assembled particle arrays forming magnetic vortex structures on top of the particles. The bifurcation temperature, where a hysteresis-free transition occurs, was extracted from the temperature dependence of the annihilation and nucleation field which increases almost linearly with Fe content of the magnetic alloy. This study provides insights into the magnetization reversal process associated with magnetic bistability, which allows adjusting the bifurcation temperature range by the material properties of the nanosystem.
在纳米结构中,涡旋态和单畴态之间的磁双稳特性在基础和技术两个方面都引起了极大的关注。在软磁纳米结构中,由磁场引起的从均匀共线磁状态到涡旋状态(或反之亦然)的转变涉及能量势垒。如果热能足以克服这个能量势垒,那么两个磁状态之间就会发生无滞后的磁双稳切换。在这项工作中,我们通过调整 FePd 合金的组成来调节这个能量势垒,这些合金沉积在自组装颗粒阵列上,在颗粒顶部形成磁涡旋结构。从消磁和磁化场的温度依赖性中提取出无滞后转变的分叉温度,这个温度依赖性几乎呈线性增加,随着磁性合金中 Fe 含量的增加而增加。这项研究提供了对与磁双稳特性相关的磁化反转过程的深入了解,这使得可以通过纳米系统的材料特性来调整分叉温度范围。