Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.
JCI Insight. 2019 Jul 23;5(16):128336. doi: 10.1172/jci.insight.128336.
Cardiac pressure overload (for example due to aortic stenosis) induces irreversible myocardial dysfunction, cardiomyocyte hypertrophy and interstitial fibrosis in patients. In contrast to adult, neonatal mice can efficiently regenerate the heart after injury in the first week after birth. To decipher whether insufficient cardiac regeneration contributes to the progression of pressure overload dependent disease, we established a transverse aortic constriction protocol in neonatal mice (nTAC). nTAC in the non-regenerative stage (at postnatal day P7) induced cardiac dysfunction, myocardial fibrosis and cardiomyocyte hypertrophy. In contrast, nTAC in the regenerative stage (at P1) largely prevented these maladaptive responses and was in particular associated with enhanced myocardial angiogenesis and increased cardiomyocyte proliferation, which both supported adaptation during nTAC. A comparative transcriptomic analysis between hearts after regenerative versus non-regenerative nTAC suggested the transcription factor GATA4 as master regulator of the regenerative gene-program. Indeed, cardiomyocyte specific deletion of GATA4 converted the regenerative nTAC into a non-regenerative, maladaptive response. Our new nTAC model can be used to identify mediators of adaptation during pressure overload and to discover novel potential therapeutic strategies.
心脏压力超负荷(例如由于主动脉瓣狭窄)可导致患者出现不可逆性心肌功能障碍、心肌细胞肥大和间质纤维化。与成人不同,新生小鼠在出生后第一周内受到损伤后能够有效地再生心脏。为了解析心脏再生不足是否导致压力超负荷依赖性疾病的进展,我们在新生小鼠中建立了一种升主动脉缩窄方案(nTAC)。在非再生阶段(出生后第 7 天,即 P7)进行 nTAC 可导致心脏功能障碍、心肌纤维化和心肌细胞肥大。相比之下,在再生阶段(P1)进行 nTAC 则在很大程度上防止了这些适应性不良反应,特别是与增强的心肌血管生成和增加的心肌细胞增殖相关,这两者都支持 nTAC 期间的适应。在再生与非再生 nTAC 后心脏之间的比较转录组分析表明,转录因子 GATA4 是再生基因程序的主要调节因子。事实上,心肌细胞特异性缺失 GATA4 可将再生 nTAC 转化为非再生、适应性不良反应。我们的新型 nTAC 模型可用于鉴定压力超负荷期间的适应介质,并发现新的潜在治疗策略。