Milanese Gianluca, Mannil Manoj, Martini Katharina, Maurer Britta, Alkadhi Hatem, Frauenfelder Thomas
Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Ramistrasse, Zurich, Switzerland.
Division of Radiology, Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy.
Medicine (Baltimore). 2019 Jul;98(29):e16423. doi: 10.1097/MD.0000000000016423.
To test whether texture analysis (TA) can discriminate between Systemic Sclerosis (SSc) and non-SSc patients in computed tomography (CT) with different radiation doses and reconstruction algorithms.In this IRB-approved retrospective study, 85 CT scans at different radiation doses [49 standard dose CT (SDCT) with a volume CT dose index (CTDIvol) of 4.86 ± 2.1 mGy and 36 low-dose (LDCT) with a CTDIvol of 2.5 ± 1.5 mGy] were selected; 61 patients had Ssc ("cases"), and 24 patients had no SSc ("controls"). CT scans were reconstructed with filtered-back projection (FBP) and with sinogram-affirmed iterative reconstruction (SAFIRE) algorithms. 304 TA features were extracted from each manually drawn region-of-interest at 6 pre-defined levels: at the midpoint between lung apices and tracheal carina, at the level of the tracheal carina, and 4 between the carina and pleural recesses. Each TA feature was averaged between these 6 pre-defined levels and was used as input in the machine learning algorithm artificial neural network (ANN) with backpropagation (MultilayerPerceptron) for differentiating between SSc and non-SSc patients.Results were compared regarding correctly/incorrectly classified instances and ROC-AUCs.ANN correctly classified individuals in 93.8% (AUC = 0.981) of FBP-LDCT, in 78.5% (AUC = 0.859) of FBP-SDCT, in 91.1% (AUC = 0.922) of SAFIRE3-LDCT and 75.7% (AUC = 0.815) of SAFIRE3-SDCT, in 88.1% (AUC = 0.929) of SAFIRE5-LDCT and 74% (AUC = 0.815) of SAFIRE5-SDCT.Quantitative TA-based discrimination of CT of SSc patients is possible showing highest discriminatory power in FBP-LDCT images.
为了测试纹理分析(TA)能否在不同辐射剂量和重建算法的计算机断层扫描(CT)中区分系统性硬化症(SSc)患者和非SSc患者。在这项经机构审查委员会(IRB)批准的回顾性研究中,选取了85例不同辐射剂量的CT扫描[49例标准剂量CT(SDCT),容积CT剂量指数(CTDIvol)为4.86±2.1 mGy,36例低剂量(LDCT),CTDIvol为2.5±1.5 mGy];61例患者患有SSc(“病例组”),24例患者未患SSc(“对照组”)。CT扫描采用滤波反投影(FBP)和正弦图确认迭代重建(SAFIRE)算法进行重建。从6个预定义层面的每个手动绘制的感兴趣区域提取304个TA特征:在肺尖和气管隆突之间的中点、气管隆突层面以及隆突与胸膜隐窝之间的4个层面。每个TA特征在这6个预定义层面之间进行平均,并用作具有反向传播的机器学习算法人工神经网络(ANN)(多层感知器)的输入,以区分SSc患者和非SSc患者。比较了正确/错误分类实例和ROC-AUC的结果。ANN在FBP-LDCT的93.8%(AUC = 0.981)、FBP-SDCT的78.5%(AUC = 0.859)、SAFIRE3-LDCT的91.1%(AUC = 0.922)和SAFIRE3-SDCT的75.7%(AUC = 0.815)、SAFIRE5-LDCT的88.1%(AUC = 0.929)和SAFIRE5-SDCT的74%(AUC = 0.815)中正确分类个体。基于定量TA的SSc患者CT鉴别是可行的,在FBP-LDCT图像中显示出最高的鉴别能力。