Suppr超能文献

基于计算机断层扫描虚拟楔形切除术的深度学习用于预测组织学上的普通间质性肺炎

Deep Learning of Computed Tomography Virtual Wedge Resection for Prediction of Histologic Usual Interstitial Pneumonitis.

作者信息

Shaish Hiram, Ahmed Firas S, Lederer David, D'Souza Belinda, Armenta Paul, Salvatore Mary, Saqi Anjali, Huang Sophia, Jambawalikar Sachin, Mutasa Simukayi

机构信息

Department of Radiology and.

Department of Pathology, Columbia University Medical Center, New York, New York; and.

出版信息

Ann Am Thorac Soc. 2021 Jan;18(1):51-59. doi: 10.1513/AnnalsATS.202001-068OC.

Abstract

The computed tomography (CT) pattern of definite or probable usual interstitial pneumonia (UIP) can be diagnostic of idiopathic pulmonary fibrosis and may obviate the need for invasive surgical biopsy. Few machine-learning studies have investigated the classification of interstitial lung disease (ILD) on CT imaging, but none have used histopathology as a reference standard. To predict histopathologic UIP using deep learning of high-resolution computed tomography (HRCT). Institutional databases were retrospectively searched for consecutive patients with ILD, HRCT, and diagnostic histopathology from 2011 to 2014 (training cohort) and from 2016 to 2017 (testing cohort). A blinded expert radiologist and pulmonologist reviewed all training HRCT scans in consensus and classified HRCT scans based on the 2018 American Thoracic Society/European Respriatory Society/Japanese Respiratory Society/Latin American Thoracic Association diagnostic criteria for idiopathic pulmonary fibrosis. A convolutional neural network (CNN) was built accepting 4 × 4 × 2 cm virtual wedges of peripheral lung on HRCT as input and outputting the UIP histopathologic pattern. The CNN was trained and evaluated on the training cohort using fivefold cross validation and was then tested on the hold-out testing cohort. CNN and human performance were compared in the training cohort. Logistic regression and survival analyses were performed. The CNN was trained on 221 patients (median age 60 yr; interquartile range [IQR], 53-66), including 71 patients (32%) with UIP or probable UIP histopathologic patterns. The CNN was tested on a separate hold-out cohort of 80 patients (median age 66 yr; IQR, 58-69), including 22 patients (27%) with UIP or probable UIP histopathologic patterns. An average of 516 wedges were generated per patient. The percentage of wedges with CNN-predicted UIP yielded a cross validation area under the curve of 74% for histopathological UIP pattern per patient. The optimal cutoff point for classifying patients on the training cohort was 16.5% of virtual lung wedges with CNN-predicted UIP and resulted in sensitivity and specificity of 74% and 58%, respectively, in the testing cohort. CNN-predicted UIP was associated with an increased risk of death or lung transplantation during cross validation (hazard ratio, 1.5; 95% confidence interval, 1.1-2.2;  = 0.03). Virtual lung wedge resection in patients with ILD can be used as an input to a CNN for predicting the histopathologic UIP pattern and transplant-free survival.

摘要

明确或可能的普通型间质性肺炎(UIP)的计算机断层扫描(CT)表现可用于诊断特发性肺纤维化,可能无需进行侵入性外科活检。很少有机器学习研究探讨CT成像上间质性肺疾病(ILD)的分类,但均未将组织病理学作为参考标准。利用高分辨率计算机断层扫描(HRCT)深度学习预测组织病理学UIP。回顾性检索机构数据库,纳入2011年至2014年(训练队列)和2016年至2017年(测试队列)连续的ILD、HRCT及诊断性组织病理学患者。一位盲法专家放射科医生和肺科医生共同回顾所有训练HRCT扫描,并根据2018年美国胸科学会/欧洲呼吸学会/日本呼吸学会/拉丁美洲胸科学会特发性肺纤维化诊断标准对HRCT扫描进行分类。构建一个卷积神经网络(CNN),将HRCT上4×4×2 cm的外周肺虚拟楔形区域作为输入,输出UIP组织病理学模式。使用五折交叉验证在训练队列上对CNN进行训练和评估,然后在留出的测试队列上进行测试。在训练队列中比较CNN和人类的表现。进行逻辑回归和生存分析。CNN在221例患者(中位年龄60岁;四分位间距[IQR],53 - 66岁)上进行训练,其中71例(32%)具有UIP或可能的UIP组织病理学模式。CNN在一个单独的80例患者(中位年龄66岁;IQR,58 - 69岁)的留出队列上进行测试,其中22例(27%)具有UIP或可能的UIP组织病理学模式。每位患者平均生成516个楔形区域。CNN预测为UIP的楔形区域百分比对于每位患者组织病理学UIP模式的曲线下交叉验证面积为74%。训练队列中对患者进行分类的最佳截断点是CNN预测为UIP的虚拟肺楔形区域的16.5%,在测试队列中的敏感性和特异性分别为74%和58%。在交叉验证期间,CNN预测的UIP与死亡或肺移植风险增加相关(风险比,1.5;95%置信区间,1.1 - 2.2;P = 0.03)。ILD患者的虚拟肺楔形切除术可作为CNN的输入,用于预测组织病理学UIP模式和无移植生存期。

相似文献

引用本文的文献

本文引用的文献

3
The present and future of deep learning in radiology.深度学习在放射学中的现在和未来。
Eur J Radiol. 2019 May;114:14-24. doi: 10.1016/j.ejrad.2019.02.038. Epub 2019 Mar 2.
5
Idiopathic Pulmonary Fibrosis.特发性肺纤维化
N Engl J Med. 2018 May 10;378(19):1811-1823. doi: 10.1056/NEJMra1705751.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验