Suppr超能文献

考生队列大小和项目分析指南健康专业教育计划:一项蒙特卡罗模拟研究。

Examinee Cohort Size and Item Analysis Guidelines for Health Professions Education Programs: A Monte Carlo Simulation Study.

机构信息

A.-S. Aubin is professor, Département d'éducation et de pédagogie, Université du Québec à Montréal, Montréal, Québec, Canada. At the time of the study, he was a postdoctoral fellow, Chaire de recherche en pédagogie médicale Paul Grand'Maison de la Société des médecins de l'Université de Sherbrooke, Sherbrooke, Québec, Canada. M. Young is associate professor, Department of Medicine, and research scientist, Centre for Medical Education, McGill University, Montreal, Québec, Canada; ORCID: http://orcid.org/0000-0002-2036-2119. K. Eva is senior scientist, Centre for Health Education Scholarship, and professor, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; ORCID: https://orcid.org/0000-0002-8672-2500. C. St-Onge is professor, Department of Medicine, Faculty of Medicine and Health Sciences, and Chaire de recherche en pédagogie médicale Paul Grand'Maison de la Société des Médecins, Université de Sherbrooke, Sherbrooke, Québec, Canada; ORCID: https://orcid.org/0000-0001-5313-0456.

出版信息

Acad Med. 2020 Jan;95(1):151-156. doi: 10.1097/ACM.0000000000002888.

Abstract

PURPOSE

Using item analyses is an important quality-monitoring strategy for written exams. Authors urge caution as statistics may be unstable with small cohorts, making application of guidelines potentially detrimental. Given the small cohorts common in health professions education, this study's aim was to determine the impact of cohort size on outcomes arising from the application of item analysis guidelines.

METHOD

The authors performed a Monte Carlo simulation study in fall 2015 to examine the impact of applying 2 commonly used item analysis guidelines on the proportion of items removed and overall exam reliability as a function of cohort size. Three variables were manipulated: Cohort size (6 levels), exam length (6 levels), and exam difficulty (3 levels). Study parameters were decided based on data provided by several Canadian medical schools.

RESULTS

The analyses showed an increase in proportion of items removed with decreases in exam difficulty and decreases in cohort size. There was no effect of exam length on this outcome. Exam length had a greater impact on exam reliability than did cohort size after applying item analysis guidelines. That is, exam reliability decreased more with shorter exams than with smaller cohorts.

CONCLUSIONS

Although program directors and assessment creators have little control over their cohort sizes, they can control the length of their exams. Creating longer exams makes it possible to remove items without as much negative impact on the exam's reliability relative to shorter exams, thereby reducing the negative impact of small cohorts when applying item removal guidelines.

摘要

目的

使用项目分析是书面考试质量监测的重要策略。作者告诫要谨慎,因为在小样本群体中,统计数据可能不稳定,应用指南可能会产生潜在的不利影响。鉴于在健康职业教育中常见的小样本群体,本研究旨在确定样本量大小对应用项目分析指南产生的结果的影响。

方法

作者于 2015 年秋季进行了蒙特卡罗模拟研究,以考察应用 2 种常用项目分析指南对项目去除比例和整体考试可靠性的影响,其影响因素包括样本量大小(6 个水平)、考试长度(6 个水平)和考试难度(3 个水平)。研究参数是根据加拿大几所医学院提供的数据决定的。

结果

分析表明,随着考试难度的降低和样本量的减少,去除的项目比例增加。考试长度对这一结果没有影响。应用项目分析指南后,考试长度对考试可靠性的影响大于样本量大小。也就是说,与小样本群体相比,较短的考试会使考试可靠性降低更多。

结论

尽管项目负责人和评估创建者对他们的样本量大小几乎没有控制,但他们可以控制考试的长度。创建更长的考试可以在不降低考试可靠性的情况下删除更多的项目,从而在应用项目删除指南时减轻小样本群体的负面影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验