Suppr超能文献

一种新型 3-植物甾醇-9α-羟化酶加氧组分及其与 NADH 再生甲酸盐脱氢酶偶联生物转化 4-雄烯-3,17-二酮为 9α-羟基-4-雄烯-3,17-二酮中的应用。

A Novel 3-Phytosterone-9α-Hydroxylase Oxygenation Component and Its Application in Bioconversion of 4-Androstene-3,17-Dione to 9α-Hydroxy-4-Androstene-3,17-Dione Coupling with A NADH Regeneration Formate Dehydrogenase.

机构信息

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Liu Avenue, Wuxi 214122, Jiangsu, China.

Biochemical Engineering College, Beijing Union University, Beijing 100023, China.

出版信息

Molecules. 2019 Jul 11;24(14):2534. doi: 10.3390/molecules24142534.

Abstract

9α-Hydroxy-4-androstene-3,17-dione (9-OH-AD) is one of the significant intermediates for the preparation of β-methasone, dexamethasone, and other steroids. In general, the key enzyme that enables the biotransformation of 4-androstene-3,17-dione (AD) to 9-OH-AD is 3-phytosterone-9α-hydroxylase (KSH), which consists of two components: a terminal oxygenase (KshA) and ferredoxin reductase (KshB). The reaction is carried out with the concomitant oxidation of NADH to NAD. In this study, the more efficient 3-phytosterone-9α-hydroxylase oxygenase (KshC) from the sp. strain VKM Ac-1817D was confirmed and compared with reported KshA. To evaluate the function of KshC on the bioconversion of AD to 9-OH-AD, the characterization of KshC and the compounded system of KshB, KshC, and NADH was constructed. The optimum ratio of KSH oxygenase to reductase content was 1.5:1. An NADH regeneration system was designed by introducing a formate dehydrogenase, further confirming that a more economical process for biological transformation from AD to 9-OH-AD was established. A total of 7.78 g of 9-OH-AD per liter was achieved through a fed-batch process with a 92.11% conversion rate (mol/mol). This enzyme-mediated hydroxylation method provides an environmentally friendly and economical strategy for the production of 9-OH-AD.

摘要

9α-羟基-4-雄烯-3,17-二酮(9-OH-AD)是制备β-甲泼尼龙、地塞米松和其他甾体药物的重要中间体之一。一般来说,使 4-雄烯-3,17-二酮(AD)生物转化为 9-OH-AD 的关键酶是 3-表雄甾酮-9α-羟化酶(KSH),它由两个组件组成:末端加氧酶(KshA)和铁氧还蛋白还原酶(KshB)。反应伴随着 NADH 同时氧化为 NAD。在这项研究中,来自 sp. 菌株 VKM Ac-1817D 的更有效的 3-表雄甾酮-9α-羟化酶加氧酶(KshC)被证实并与报道的 KshA 进行了比较。为了评估 KshC 在 AD 生物转化为 9-OH-AD 中的作用,构建了 KshC 的特性和 KshB、KshC 和 NADH 的复合系统。KSH 加氧酶与还原酶含量的最佳比例为 1.5:1。通过引入甲酸脱氢酶设计了 NADH 再生系统,进一步证实建立了从 AD 到 9-OH-AD 的更经济的生物转化过程。通过分批补料工艺实现了每升 7.78 克 9-OH-AD,转化率为 92.11%(摩尔/摩尔)。这种酶介导的羟化方法为 9-OH-AD 的生产提供了一种环保和经济的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a26c/6680482/06d126fda8a2/molecules-24-02534-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验