Tecnalia, Parque Científico y Tecnológico de Gipuzkoa, Mikeletegi Pasealekua, 2. 20009 San Sebastián, Spain.
Escuela Técnica Superior de Ingenieros Industrales, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006 Madrid, Spain.
Sensors (Basel). 2019 Jul 14;19(14):3113. doi: 10.3390/s19143113.
This paper aims to contribute to the field of ambient intelligence from the perspective of real environments, where noise levels in datasets are significant, by showing how machine learning techniques can contribute to the knowledge creation, by promoting software sensors. The created knowledge can be actionable to develop features helping to deal with problems related to minimally labelled datasets. A case study is presented and analysed, looking to infer high-level rules, which can help to anticipate abnormal activities, and potential benefits of the integration of these technologies are discussed in this context. The contribution also aims to analyse the usage of the models for the transfer of knowledge when different sensors with different settings contribute to the noise levels. Finally, based on the authors' experience, a framework proposal for creating valuable and aggregated knowledge is depicted.
本文旨在从真实环境的角度为情境感知领域做出贡献,其中数据集的噪声水平非常重要,通过展示机器学习技术如何通过促进软件传感器为知识创造做出贡献。创建的知识可以付诸行动,开发有助于解决与最小标记数据集相关问题的功能。本文提出并分析了一个案例研究,旨在推断出高级规则,这些规则可以帮助预测异常活动,并在这种情况下讨论了这些技术集成的潜在好处。该贡献还旨在分析在具有不同设置的不同传感器导致噪声水平不同的情况下,使用模型进行知识转移的情况。最后,根据作者的经验,提出了一个创建有价值和聚合知识的框架建议。