Suppr超能文献

基于深度学习的社交媒体图像在灾难情境中的人类情感与活动识别。

Human Sentiment and Activity Recognition in Disaster Situations Using Social Media Images Based on Deep Learning.

机构信息

Department of Robot System Engineering, Tongmyong University, Busan 48520, Korea.

Department of Electronic Engineering, Tongmyong University, Busan 48520, Korea.

出版信息

Sensors (Basel). 2020 Dec 11;20(24):7115. doi: 10.3390/s20247115.

Abstract

A rapidly increasing growth of social networks and the propensity of users to communicate their physical activities, thoughts, expressions, and viewpoints in text, visual, and audio material have opened up new possibilities and opportunities in sentiment and activity analysis. Although sentiment and activity analysis of text streams has been extensively studied in the literature, it is relatively recent yet challenging to evaluate sentiment and physical activities together from visuals such as photographs and videos. This paper emphasizes human sentiment in a socially crucial field, namely social media disaster/catastrophe analysis, with associated physical activity analysis. We suggest multi-tagging sentiment and associated activity analyzer fused with a a deep human count tracker, a pragmatic technique for multiple object tracking, and count in occluded circumstances with a reduced number of identity switches in disaster-related videos and images. A crowd-sourcing study has been conducted to analyze and annotate human activity and sentiments towards natural disasters and related images in social networks. The crowdsourcing study outcome into a large-scale benchmark dataset with three annotations sets each resolves distinct tasks. The presented analysis and dataset will anchor a baseline for future research in the domain. We believe that the proposed system will contribute to more viable communities by benefiting different stakeholders, such as news broadcasters, emergency relief organizations, and the public in general.

摘要

社交网络的快速发展以及用户倾向于在文本、视觉和音频材料中表达他们的身体活动、思想、表情和观点,这为情感和活动分析开辟了新的可能性和机会。尽管文献中已经广泛研究了文本流的情感和活动分析,但从照片和视频等视觉资料中评估情感和身体活动相结合相对较新且具有挑战性。本文强调了人类情感在社交媒体灾难/灾害分析等社会关键领域的重要性,以及相关的身体活动分析。我们提出了一种多标签情感分析和相关活动分析方法,融合了深度人体计数跟踪器、一种实用的多目标跟踪技术,以及在灾难相关视频和图像中遮挡情况下的计数,减少了身份切换次数。我们进行了一项众包研究,以分析和注释社交网络中与自然灾害相关的图像和视频中的人类活动和情感。该众包研究的结果是一个具有三个注释集的大规模基准数据集,每个数据集都解决了不同的任务。所提出的分析和数据集将为该领域的未来研究提供基准。我们相信,该系统将通过使新闻广播公司、紧急救援组织和公众等不同利益相关者受益,为更可行的社区做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10db/7763261/2470ceea965e/sensors-20-07115-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验