School of Cancer & Pharmaceutical Sciences, Translational Oncology and Urology Research, King's College London, London, UK.
Regional Oncologic Centre, Uppsala University, Uppsala, Sweden.
BMC Mol Cell Biol. 2019 Jul 23;20(1):28. doi: 10.1186/s12860-019-0210-7.
Metabolites are genetically and environmentally determined. Consequently, they can be used to characterize environmental exposures and reveal biochemical mechanisms that link exposure to disease. To explore disease susceptibility and improve population risk stratification, we aimed to identify metabolic profiles linked to carcinogenesis and mortality and their intrinsic associations by characterizing subgroups of individuals based on serum biomarker measurements. We included 13,615 participants from the Swedish Apolipoprotein MOrtality RISk Study who had measurements for 19 biomarkers representative of central metabolic pathways. Latent Class Analysis (LCA) was applied to characterise individuals based on their biomarker values (according to medical cut-offs), which were then examined as predictors of cancer and death using multivariable Cox proportional hazards models.
LCA identified four metabolic profiles within the population: (1) normal values for all markers (63% of population); (2) abnormal values for lipids (22%); (3) abnormal values for liver functioning (9%); (4) abnormal values for iron and inflammation metabolism (6%). All metabolic profiles (classes 2-4) increased risk of cancer and mortality, compared to class 1 (e.g. HR for overall death was 1.26 (95% CI: 1.16-1.37), 1.67 (95% CI: 1.47-1.90), and 1.21 (95% CI: 1.05-1.41) for class 2, 3, and 4, respectively).
We present an innovative approach to risk stratify a well-defined population based on LCA metabolic-defined subgroups for cancer and mortality. Our results indicate that standard of care baseline serum markers, when assembled into meaningful metabolic profiles, could help assess long term risk of disease and provide insight in disease susceptibility and etiology.
代谢物是由遗传和环境决定的。因此,它们可以用来描述环境暴露,并揭示将暴露与疾病联系起来的生化机制。为了探索疾病易感性并改善人群风险分层,我们旨在根据血清生物标志物测量结果,通过对个体进行特征描述,确定与致癌作用和死亡率相关的代谢特征及其内在关联。我们纳入了来自瑞典载脂蛋白 M 死亡率风险研究的 13615 名参与者,他们的 19 种生物标志物测量值代表了中心代谢途径。应用潜在类别分析(LCA)根据生物标志物值(根据医学截止值)对个体进行特征描述,然后使用多变量 Cox 比例风险模型检查这些标志物作为癌症和死亡的预测因子。
LCA 在人群中确定了四种代谢特征:(1)所有标志物的正常值(占人群的 63%);(2)脂质异常(22%);(3)肝功能异常(9%);(4)铁和炎症代谢异常(6%)。与第 1 类(例如,所有类别的癌症和死亡率风险均升高,与第 1 类相比)相比,所有代谢特征(第 2-4 类)均增加了癌症和死亡率风险(例如,总死亡的 HR 分别为 1.26(95%CI:1.16-1.37),1.67(95%CI:1.47-1.90)和 1.21(95%CI:1.05-1.41)类 2、3 和 4)。
我们提出了一种创新的方法,基于 LCA 代谢定义的亚组,根据癌症和死亡率对明确界定的人群进行风险分层。我们的结果表明,标准的护理基线血清标志物,当组合成有意义的代谢特征时,可能有助于评估疾病的长期风险,并深入了解疾病易感性和病因。