School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea.
School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea.
Biophys J. 2019 Aug 6;117(3):613-625. doi: 10.1016/j.bpj.2019.06.032. Epub 2019 Jul 4.
Adapting a well-established formalism in polymer physics, we develop a minimalist approach to infer three-dimensional folding of chromatin from Hi-C data. The three-dimensional chromosome structures generated from our heterogeneous loop model (HLM) are used to visualize chromosome organizations that can substantiate the measurements from fluorescence in situ hybridization, chromatin interaction analysis by paired-end tag sequencing, and RNA-seq signals. We demonstrate the utility of the HLM with several case studies. Specifically, the HLM-generated chromosome structures, which reproduce the spatial distribution of topologically associated domains from fluorescence in situ hybridization measurement, show the phase segregation between two types of topologically associated domains explicitly. We discuss the origin of cell-type-dependent gene-expression level by modeling the chromatin globules of α-globin and SOX2 gene loci for two different cell lines. We also use the HLM to discuss how the chromatin folding and gene-expression level of Pax6 loci, associated with mouse neural development, are modulated by interactions with two enhancers. Finally, HLM-generated structures of chromosome 19 of mouse embryonic stem cells, based on single-cell Hi-C data collected over each cell-cycle phase, visualize changes in chromosome conformation along the cell-cycle. Given a contact frequency map between chromatic loci supplied from Hi-C, HLM is a computationally efficient and versatile modeling tool to generate chromosome structures that can complement interpreting other experimental data.
我们采用高分子物理中成熟的形式体系,从 Hi-C 数据中推断出染色体三维折叠的最简方法。我们的异质环模型(HLM)生成的三维染色体结构可用于可视化染色体组织,这些组织可以证实荧光原位杂交、通过末端配对标签测序进行的染色质相互作用分析和 RNA-seq 信号的测量结果。我们通过几个案例研究展示了 HLM 的实用性。具体来说,HLM 生成的染色体结构再现了荧光原位杂交测量中拓扑相关结构域的空间分布,明确显示了两种拓扑相关结构域之间的相位分离。我们通过对两种不同细胞系的α-球蛋白和 SOX2 基因座的染色质球粒进行建模,讨论了细胞类型依赖性基因表达水平的起源。我们还使用 HLM 讨论了与小鼠神经发育相关的 Pax6 基因座的染色质折叠和基因表达水平如何通过与两个增强子的相互作用进行调节。最后,基于在每个细胞周期阶段收集的单细胞 Hi-C 数据,HLM 生成了小鼠胚胎干细胞 19 号染色体的结构,可视化了沿着细胞周期的染色体构象变化。给定从 Hi-C 提供的染色质基因座之间的接触频率图,HLM 是一种计算效率高且功能多样的建模工具,可以生成可补充解释其他实验数据的染色体结构。