Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.
Methods Mol Biol. 2025;2856:309-324. doi: 10.1007/978-1-0716-4136-1_19.
Polymer modeling has been playing an increasingly important role in complementing 3D genome experiments, both to aid their interpretation and to reveal the underlying molecular mechanisms. This chapter illustrates an application of Hi-C metainference, a Bayesian approach to explore the 3D organization of a target genomic region by integrating experimental contact frequencies into a prior model of chromatin. The method reconstructs the conformational ensemble of the target locus by combining molecular dynamics simulation and Monte Carlo sampling from the posterior probability distribution given the data. Using prior chromatin models at both 1 kb and nucleosome resolution, we apply this approach to a 30 kb locus of mouse embryonic stem cells consisting of two well-defined domains linking several gene promoters together. Retaining the advantages of both physics-based and data-driven strategies, Hi-C metainference can provide an experimentally consistent representation of the system while at the same time retaining molecular details necessary to derive physical insights.
聚合物建模在补充 3D 基因组实验方面发挥着越来越重要的作用,既有助于解释实验结果,又能揭示潜在的分子机制。本章展示了 Hi-C 元推断的应用,这是一种贝叶斯方法,通过将实验接触频率整合到染色质的先验模型中,来探索目标基因组区域的 3D 组织。该方法通过将分子动力学模拟与基于数据的后验概率分布的蒙特卡罗采样相结合,来重建目标基因座的构象系综。利用 1kb 和核小体分辨率的先验染色质模型,我们将这种方法应用于由两个连接多个基因启动子的明确结构域组成的 30kb 大小的小鼠胚胎干细胞基因座。Hi-C 元推断保留了基于物理和基于数据的策略的优势,可以提供系统的实验一致性表示,同时保留了得出物理见解所需的分子细节。