Suppr超能文献

利用 Levenberg-Marquardt 算法和 Broyden 的一阶更新的 Jacobian 算子进行流行病学中的稳定参数估计和预测。

On Stable Parameter Estimation and Forecasting in Epidemiology by the Levenberg-Marquardt Algorithm with Broyden's Rank-one Updates for the Jacobian Operator.

机构信息

Department of Mathematics and Statistics, Georgia State University, Atlanta, USA.

School of Public Health, Georgia State University, Atlanta, USA.

出版信息

Bull Math Biol. 2019 Oct;81(10):4210-4232. doi: 10.1007/s11538-019-00650-9. Epub 2019 Jul 23.

Abstract

Rigorously calibrating dynamic models with time-series data can pose roadblocks. Oftentimes, the problem is ill-posed and one has to rely on appropriate regularization techniques to ensure stable parameter estimation from which forward projections with quantified uncertainty could be generated. If the inversion procedure is cast as nonlinear least squares constrained by a system of nonlinear differential equations, then the system has to be solved numerically at every step of the iterative process and the corresponding parameter-to-data map cannot be used to evaluate the Fréchet derivative analytically. To address challenges related to both instability and Jacobian approximation, we propose a novel regularized Levenberg-Marquardt algorithm with iterative rank-one updates for computation of the derivative operator. In order to test the efficiency of this scheme, we conduct numerical experiments using a mathematical model of infectious disease transmission and real incidence data of historic measles outbreaks in the UK.

摘要

用时间序列数据严格校准动态模型可能会遇到障碍。通常,这个问题是不适定的,人们不得不依赖适当的正则化技术来确保从稳定的参数估计中生成具有量化不确定性的正向预测。如果反演过程被表述为非线性最小二乘问题,受非线性微分方程组的约束,那么在迭代过程的每一步都必须进行数值求解,并且相应的参数到数据映射不能用于分析计算弗雷歇导数。为了解决与不稳定性和雅可比近似相关的挑战,我们提出了一种新的正则化 Levenberg-Marquardt 算法,带有迭代的秩一更新,用于计算导数算子。为了测试该方案的效率,我们使用传染病传播的数学模型和英国历史麻疹爆发的实际发病率数据进行了数值实验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验