Al-Darabsah Isam, Yuan Yuan
Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
J Math Biol. 2018 Aug;77(2):343-376. doi: 10.1007/s00285-017-1199-1. Epub 2017 Dec 22.
In this paper, the global dynamics of a periodic disease transmission model with two delays in incubation and asymptomatic carriage periods is investigated. We first derive the model system with a general nonlinear incidence rate function by stage-structure. Then, we identify the basic reproduction ratio [Formula: see text] for the model and present numerical algorithm to calculate it. We obtain the global attractivity of the disease-free state when [Formula: see text] and discuss the disease persistence when [Formula: see text]. We also explore the coexistence of endemic state in the nonautonomous system and prove the uniqueness with constants coefficients. Numerical simulations are provided to present a case study regarding the meningococcal meningitis disease transmission and discuss the influence of carriers on [Formula: see text].
本文研究了一个在潜伏期和无症状携带期具有两个时滞的周期性疾病传播模型的全局动力学。我们首先通过阶段结构推导具有一般非线性发病率函数的模型系统。然后,我们确定该模型的基本再生数[公式:见原文]并给出计算它的数值算法。当[公式:见原文]时,我们得到无病状态的全局吸引性,并讨论当[公式:见原文]时疾病的持续性。我们还探讨了非自治系统中地方病状态的共存性,并证明了常系数情况下的唯一性。提供了数值模拟以给出关于脑膜炎球菌性脑膜炎疾病传播的案例研究,并讨论携带者对[公式:见原文]的影响。