Suppr超能文献

SgrS 细菌小 RNA 的目标优先级和调控层次结构的决定因素。

Determinants of target prioritization and regulatory hierarchy for the bacterial small RNA SgrS.

机构信息

Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL, 61801, USA.

Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.

出版信息

Mol Microbiol. 2019 Oct;112(4):1199-1218. doi: 10.1111/mmi.14355. Epub 2019 Aug 6.

Abstract

Small RNA (sRNA) regulators promote efficient responses to stress, but the mechanisms for prioritizing target mRNA regulation remain poorly understood. This study examines mechanisms underlying hierarchical regulation by the sRNA SgrS, found in enteric bacteria and produced under conditions of metabolic stress. SgrS posttranscriptionally coordinates a nine-gene regulon to restore growth and homeostasis. An in vivo reporter system quantified SgrS-dependent regulation of target genes and established that SgrS exhibits a clear target preference. Regulation of some targets is efficient even at low SgrS levels, whereas higher SgrS concentrations are required to regulate other targets. In vivo and in vitro analyses revealed that RNA structure and the number and position of base pairing sites relative to the start of translation impact the efficiency of regulation of SgrS targets. The RNA chaperone Hfq uses distinct modes of binding to different SgrS mRNA targets, which differentially influences positive and negative regulation. The RNA degradosome plays a larger role in regulation of some SgrS targets compared to others. Collectively, our results suggest that sRNA selection of target mRNAs and regulatory hierarchy are influenced by several molecular features and that the combination of these features precisely tunes the efficiency of regulation of multi-target sRNA regulons.

摘要

小 RNA(sRNA)调节剂促进对压力的有效响应,但优先调节靶 mRNA 的机制仍知之甚少。本研究探讨了在代谢应激条件下发现的肠细菌中产生的 sRNA SgrS 进行层次化调节的机制。SgrS 对九个基因调控子进行转录后协调,以恢复生长和体内平衡。体内报告系统定量测定了 SgrS 对靶基因的依赖性调节,并确定 SgrS 表现出明显的靶标偏好。即使在低 SgrS 水平下,对某些靶标的调节也很有效,而调节其他靶标则需要更高的 SgrS 浓度。体内和体外分析表明,RNA 结构以及相对于翻译起始的碱基配对位点的数量和位置会影响 SgrS 靶标的调节效率。RNA 伴侣 Hfq 使用不同的结合模式与不同的 SgrS mRNA 靶标结合,这会对正调控和负调控产生不同的影响。与其他靶标相比,RNA 降解酶体在一些 SgrS 靶标的调节中发挥更大的作用。总的来说,我们的结果表明,sRNA 对靶 mRNAs 的选择和调控层次受几个分子特征的影响,这些特征的组合精确地调整了多靶标 sRNA 调控子的调节效率。

相似文献

1
Determinants of target prioritization and regulatory hierarchy for the bacterial small RNA SgrS.
Mol Microbiol. 2019 Oct;112(4):1199-1218. doi: 10.1111/mmi.14355. Epub 2019 Aug 6.
2
Physiological consequences of multiple-target regulation by the small RNA SgrS in Escherichia coli.
J Bacteriol. 2013 Nov;195(21):4804-15. doi: 10.1128/JB.00722-13. Epub 2013 Jul 19.
3
A minimal base-pairing region of a bacterial small RNA SgrS required for translational repression of ptsG mRNA.
Mol Microbiol. 2010 May;76(3):782-92. doi: 10.1111/j.1365-2958.2010.07141.x. Epub 2010 Mar 25.
4
The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes.
Nucleic Acids Res. 2011 May;39(9):3806-19. doi: 10.1093/nar/gkq1219. Epub 2011 Jan 17.
5
A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide.
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20454-9. doi: 10.1073/pnas.0708102104. Epub 2007 Nov 27.
6
Characterization of homologs of the small RNA SgrS reveals diversity in function.
Nucleic Acids Res. 2009 Sep;37(16):5477-85. doi: 10.1093/nar/gkp591. Epub 2009 Jul 20.
7
The ancestral SgrS RNA discriminates horizontally acquired Salmonella mRNAs through a single G-U wobble pair.
Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):E757-64. doi: 10.1073/pnas.1119414109. Epub 2012 Mar 1.
9
Translation inhibition from a distance: The small RNA SgrS silences a ribosomal protein S1-dependent enhancer.
Mol Microbiol. 2020 Sep;114(3):391-408. doi: 10.1111/mmi.14514. Epub 2020 May 2.
10
Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq.
Mol Microbiol. 2006 Aug;61(4):1013-22. doi: 10.1111/j.1365-2958.2006.05288.x. Epub 2006 Jul 12.

引用本文的文献

1
CsrA selectively modulates sRNA-mRNA regulator outcomes.
Front Mol Biosci. 2023 Nov 21;10:1249528. doi: 10.3389/fmolb.2023.1249528. eCollection 2023.
2
CRISPR-dCas13a system for programmable small RNAs and polycistronic mRNA repression in bacteria.
Nucleic Acids Res. 2024 Jan 11;52(1):492-506. doi: 10.1093/nar/gkad1130.
3
CsrA Shows Selective Regulation of sRNA-mRNA Networks.
bioRxiv. 2023 Mar 29:2023.03.29.534774. doi: 10.1101/2023.03.29.534774.
4
Microbial detoxification of lignocellulosic biomass hydrolysates: Biochemical and molecular aspects, challenges, exploits and future perspectives.
Front Bioeng Biotechnol. 2022 Nov 22;10:1061667. doi: 10.3389/fbioe.2022.1061667. eCollection 2022.
5
Identification of Attenuators of Transcriptional Termination: Implications for RNA Regulation in Escherichia coli.
mBio. 2022 Dec 20;13(6):e0237122. doi: 10.1128/mbio.02371-22. Epub 2022 Oct 13.
7
Reprograming of sRNA target specificity by the leader peptide peTrpL in response to antibiotic exposure.
Nucleic Acids Res. 2021 Mar 18;49(5):2894-2915. doi: 10.1093/nar/gkab093.
8
Stochastic Analysis Demonstrates the Dual Role of Hfq in Chaperoning Sugar Shock Response.
Front Mol Biosci. 2020 Dec 23;7:593826. doi: 10.3389/fmolb.2020.593826. eCollection 2020.
9
The Small RNA sr8384 Is a Crucial Regulator of Cell Growth in Solventogenic Clostridia.
Appl Environ Microbiol. 2020 Jun 17;86(13). doi: 10.1128/AEM.00665-20.
10
The Non-Coding Regulatory RNA Revolution in Archaea.
Genes (Basel). 2018 Mar 5;9(3):141. doi: 10.3390/genes9030141.

本文引用的文献

1
Translational regulation by bacterial small RNAs via an unusual Hfq-dependent mechanism.
Nucleic Acids Res. 2018 Mar 16;46(5):2585-2599. doi: 10.1093/nar/gkx1286.
2
New aspects of RNA-based regulation by Hfq and its partner sRNAs.
Curr Opin Microbiol. 2018 Apr;42:53-61. doi: 10.1016/j.mib.2017.10.014. Epub 2017 Nov 7.
3
IntaRNA 2.0: enhanced and customizable prediction of RNA-RNA interactions.
Nucleic Acids Res. 2017 Jul 3;45(W1):W435-W439. doi: 10.1093/nar/gkx279.
4
C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA.
Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):E6089-E6096. doi: 10.1073/pnas.1613053113. Epub 2016 Sep 28.
5
Bacterial Stress Responses during Host Infection.
Cell Host Microbe. 2016 Aug 10;20(2):133-43. doi: 10.1016/j.chom.2016.07.009.
7
Diverse mechanisms of post-transcriptional repression by the small RNA regulator of glucose-phosphate stress.
Mol Microbiol. 2016 Jan;99(2):254-73. doi: 10.1111/mmi.13230. Epub 2015 Oct 26.
8
Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition.
EMBO J. 2015 Oct 14;34(20):2557-73. doi: 10.15252/embj.201591569. Epub 2015 Sep 15.
9
SHAPE directed RNA folding.
Bioinformatics. 2016 Jan 1;32(1):145-7. doi: 10.1093/bioinformatics/btv523. Epub 2015 Sep 9.
10
Small RNAs Regulate Primary and Secondary Metabolism in Gram-negative Bacteria.
Microbiol Spectr. 2015 Jun;3(3). doi: 10.1128/microbiolspec.MBP-0009-2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验