Clinical Pharmacology and Pharmacometrics, Bristol-Myers Squibb, Princeton, New Jersey, 08543, USA.
Bioanalytical Sciences, Translational Medicine, Bristol-Myers Squibb, Princeton, New Jersey, 08543, USA.
AAPS J. 2019 Jul 24;21(5):94. doi: 10.1208/s12248-019-0361-7.
A mechanistic model of the immune response was evaluated for its ability to predict anti-drug antibody (ADA) and their impact on pharmacokinetics (PK) and pharmacodynamics (PD) for a biotherapeutic in a phase 1 clinical trial. Observed ADA incidence ranged from 33 to 67% after single doses and 27-50% after multiple doses. The model captured the single dose incidence well; however, there was overprediction after multiple dosing. The model was updated to include a T-regulatory (Treg) cell mediated tolerance, which reduced the overprediction (relative decrease in predicted incidence rate of 21.5-59.3% across multidose panels) without compromising the single dose predictions (relative decrease in predicted incidence rate of 0.6-13%). The Treg-adjusted model predicted no ADA impact on PK or PD, consistent with the observed data. A prospective phase 2 trial was simulated, including co-medication effects in the form of corticosteroid-induced immunosuppression. Predicted ADA incidences were 0-10%, depending on co-medication dosage. This work demonstrates the utility in applying an integrated, iterative modeling approach to predict ADA during different stages of clinical development.
评价了一种免疫反应机制模型,以评估其预测生物治疗药物在 1 期临床试验中抗药物抗体 (ADA) 及其对药代动力学 (PK) 和药效动力学 (PD) 影响的能力。单次给药后的 ADA 发生率为 33%至 67%,多次给药后的 ADA 发生率为 27%至 50%。该模型很好地捕捉到了单次剂量的发生率;然而,多次给药后存在过度预测。该模型已更新,包括 T 调节 (Treg) 细胞介导的耐受,这减少了过度预测(在多个剂量组中,预测发生率相对降低 21.5%至 59.3%),而不影响单次剂量预测(预测发生率相对降低 0.6%至 13%)。调整后的 Treg 模型预测 ADA 对 PK 或 PD 没有影响,与观察到的数据一致。模拟了一项前瞻性 2 期试验,包括以皮质类固醇诱导的免疫抑制形式的联合用药效应。根据联合用药剂量,预测 ADA 发生率为 0%至 10%。这项工作证明了在临床开发的不同阶段应用集成、迭代建模方法来预测 ADA 的实用性。